北京课改版七年级下册第六章 整式的运算综合与测试习题
展开
这是一份北京课改版七年级下册第六章 整式的运算综合与测试习题
京改版七年级数学下册第六章整式的运算定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列关于整式的说法错误的是( )A.单项式的系数是-1 B.单项式的次数是3C.多项式是二次三项式 D.单项式与ba是同类项2、若,,求的值是( )A.6 B.8 C.26 D.203、下列计算正确的是( )A.a+b=ab B.7a+a=7a2C.3x2y﹣2yx2=x2y D.3a﹣(a﹣b)=2a﹣b4、下列计算正确的是( )A. B.C. D.5、下列各式中,计算结果为x10的是( )A.x5+x5 B.x2•x5 C.x20÷x2 D.(x5)26、若,,,则的值为( )A. B. C.1 D.7、下列各式中,能用平方差公式计算的是( )A.(a+b)(﹣a﹣b) B.(a+b)(a﹣b)C.(a+b)(a﹣d) D.(a+b)(2a﹣b)8、把式子去括号后正确的是( )A. B. C. D.9、下列计算正确的有( )①-2(a-b)=-2a+2b ②2c2-c2=2 ③3a+2b=5ab ④x2y-4yx2=-3x2yA.3个 B.2个 C.1个 D.0个10、用大小相等的小正方形按一定规律拼成下列图形,则第11个图形中正方形的个数是( )A.110 B.240 C.428 D.572第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、观察下面三行数:﹣2、4、﹣8、16、﹣32、64…①﹣5、1、﹣11、13、﹣35、61…②﹣、1、﹣2、4、﹣8、16…③取每行数的第10个数,则这三个数的和为________.2、一个白色圆生成一个黑色圆,一个黑色圆生成一个白色圆和一个黑色圆,按如图方式排列,依此类推,第十行圆的个数为 _____.3、若将单项式﹣xy2的系数用字母a表示、次数用字母b表示,则ab=_____.4、①52﹣4×12=21;②72﹣4×22=33;③92﹣4×32=45;④112﹣4×42=57…根据上述规律,用含n的代数式表示第n个等式:_____.5、化简得______.三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:,其中.2、先化简,再求值:,其中,.3、先化简,再求值:,其中,.4、(1)计算:;(2)先化简,再求值:,其中,.5、计算:(1)(2)---------参考答案-----------一、单选题1、C【分析】根据单项式系数和次数的定义,多项式的定义,同类项的定义逐一判断即可.【详解】解:A、单项式的系数是-1,说法正确,不符合题意;B、单项式的次数是3,说法正确,不符合题意;C、多项式是三次二项式,说法错误,符合题意;D、单项式与ba是同类项,说法正确,不符合题意;故选C.【点睛】本题主要考查了单项式的次数、系数的定义,多项式的定义,同类项的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数;同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项.2、B【分析】根据题意利用完全平方和公式可得,进而整体代入,即可求出的值.【详解】解:∵,∴,∵,∴,∴.故选:B.【点睛】本题考查代数式求值,熟练掌握运用完全平方和公式进行变形与整体代入计算是解题的关键.3、C【分析】根据整式的加减运算法则和去括号法则即可求出答案.【详解】解:A、a与b不是同类项,故不能合并,故A不符合题意.B、7a+a=8a,故B不符合题意.C、3x2y﹣2yx2=x2y,故C符合题意.D、3a﹣(a﹣b)=3a﹣a+b=2a+b,故D不符合题意.故选C.【点睛】本题主要考查了整式的加减计算和去括号,解题的关键在于能够熟练掌握相关计算法则.4、D【分析】根据完全平方公式逐项计算即可.【详解】解:A.,故不正确;B.,故不正确;C.,故不正确;D.,正确;故选D【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a±b)2=a2±2ab+b2是解答本题的关键.5、D【分析】利用合并同类项的法则,同底数幂的乘法的法则,同底数幂的除法的法则,幂的乘方的法则对各项进行运算即可.【详解】解:A、x5+x5=2x5,故A不符合题意;B、x2•x5=x7,故B不符合题意;C、x20÷x2=x18,故C不符合题意;D、(x5)2=x10,故D符合题意;故选D.【点睛】本题主要考查了合并同类项,同底数幂乘法,同底数幂除法,幂的乘方,熟知相关计算法则是解题的关键.6、D【分析】根据同底数幂的除法的逆运算及幂的乘方的逆运算解答.【详解】解:∵,,∴==3÷8=,故选D.【点睛】本题考查了同底数幂的除法的逆运算及幂的乘方的逆运算,解题的关键是熟练掌握运算法则.7、B【分析】根据平方差公式(a+b)(a﹣b)=a2﹣b2对各选项分别进行判断.【详解】解:A、(a+b)(﹣a﹣b)=﹣(a+b)(a+b)两项都相同,不能用平方差公式计算.故本选项不符合题意;B、(a+b)(a﹣b)存在相同的项与互为相反数的项,能用平方差公式计算,故本选项符合题意;C、(a+b)(a﹣d)中存在相同项,没有相反项,不能用平方差公式计算.故本选项不符合题意;D、(a+b)(2a﹣b)中存在相反项,没有相同项,不能用平方差公式计算.故本选项不符合题意;故选:B.【点睛】本题考查了平方差公式.运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.8、C【分析】由去括号法则进行化简,即可得到答案.【详解】解:,故选:C【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.顺序为先大后小.9、B【分析】括号前为正号,去括号不变号;若为符号,去括号变号;提取公因式,合并同类项.【详解】解:-2(a-b)=-2a+2b,所以正确,符合题意;2c2-c2=(2-1)c2=c2≠2,所以错误,不符合题意;3a+2b≠5ab,所以错误,不符合题意;x2y-4yx2=x2y-4x2y=(1-4)x2y=-3x2y ,所以正确,符合题意.故选B.【点睛】本题考查了整式加减运算中的去括号与合并同类项.解题的关键找出同类项,正确的去括号.10、D【分析】由第一个图形中有:1×2=2个正方形;第二个图形中有:2×3+2-13-1=6+2=8个正方形,第三个图形有:3×4+3-14-1+3-24-2=12+6+2=20个正方形,可以推出第n个图形有nn+1+n-1n+1-1+n-2n+1-+…+n-n+1n+1-n+1,由此求解即可.【详解】解:第一个图形中有:1×2=2个正方形;第二个图形中有:2×3+2-13-1=6+2=8个正方形,第三个图形有:3×4+3-14-1+3-24-2=12+6+2=20个正方形,∴可以推出第n个图形有nn+1+n-1n+1-1+n-2n+1-2+…+n-n+1n+1-n+1,∴第 11 个图形中正方形的个数是11×12+11×10+10×9+9×8+8×7+7×6+6×5+5×4+4×3+3×2+2×1=132+110+90+72+56+42+30+20+12+6+2=572个正方形,故选D.【点睛】本题主要考查了图形类的规律探索,解题的挂件在于能够根据题意找到规律求解.二、填空题1、【分析】观察第①行数排列的规律,发现第①行第个数是,第②行数是第①行数减去,第③行数是第①行数乘以,进而可得每行数的第个数的和.【详解】解:根据三行数的规律可知:第①行第个数是,第②行数是第①行数减去,第③行数是第①行数乘以,则每行数的第个数的和为:===,故答案为:.【点睛】本题考查了数字的变化规律,根据题意得出每列数字的变化规律是解本题的关键.2、55【分析】根据第一行有1个圆,第二行有1个圆,第三行有1+1=2个圆,第四行有1+2=3个圆,第五行有2+3=5个圆,第六行有3+5=8个圆,可知从第三行起,第n行圆的个数是第n-2行和第n-1行圆的个数和,由此求解即可.【详解】解:由题意得:第一行有1个圆,第二行有1个圆,第三行有1+1=2个圆,第四行有1+2=3个圆,第五行有2+3=5个圆,第六行有3+5=8个圆,∴第七行有5+8=13个圆,∴第八行有8+13=21个圆,第九行有13+21=34个圆,第10行有21+34=55个圆,故答案为:55.【点睛】本题主要考查了图形类的规律问题,解题的关键在于能够根据题意找到规律求解.3、-1【分析】先根据单项式次数和次数的定义求出a、b的值,然后代值计算即可.【详解】解:∵单项式﹣xy2的系数用字母a表示、次数用字母b表示,∴a=﹣1,b=3,代入运算即可.∴ab=(﹣1)3=﹣1.故答案为:﹣1.【点睛】本题主要考查了单项式次数和系数的定义,代数式求值,有理数的乘方,熟知单项式的系数和次数的定义是解题的关键:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数.4、(2n+3)2﹣4n2=12 n +9【分析】通过观察发现,式子的第一个数是从5开始的奇数,第二个数是从1开始的自然的平方的4倍,所得结果是12n+9,由此可求解.【详解】解:∵①52﹣4×12=21;②72﹣4×22=33;③92﹣4×32=45;④112﹣4×42=57…,∴第n个式子是:(2n+3)2﹣4n2=12 n +9.故答案为:(2n+3)2﹣4n2=12 n +9【点睛】本题考查了根据式子找规律,并表示规律,根据题意,找出各式中变化的规律是解题关键.5、【分析】去括号再合并同类项即可.【详解】故答案为:【点睛】本题考查了整式的加减运算,其实质是去括号、合并同类项.但要注意运用乘法分配律时不要出现漏乘.三、解答题1、,2【解析】【分析】先将原多项式化简,再将代入,即可求解.【详解】解: ,当时,原式 .【点睛】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.2、【解析】【分析】先利用乘法公式以及单项式乘多项式去括号,然后合并同类项,最后利用整式除法,求出化简结果,字母的值代入化简结果,求出整式的值.【详解】解:当,时,原式.【点睛】本题主要是考查了整式的化简求值,熟练掌握乘法公式、单项式乘多项式去括号以及整式除法法则,是求解该题的关键.3、,【解析】【分析】先利用完全平方公式和单项式乘多项式的运算法则去括号,然后再合并同类项,求出化简结果,将字母的值代入化简结果,求出整个代数式的值.【详解】解:原式 ,将,代入得:.【点睛】本题主要是考查了整式的化简求值,熟练掌握完全平方公式以及单项式乘多项式的法则,是求解本题的关键.4、(1)10;(2)ab2,9【解析】【分析】(1)直接利用有理数的混合运算法则计算得出答案;(2)直接去括号进而找出同类项,进而合并同类项,再把已知数据代入求出答案.【详解】解:(1)=13-5+21-19=10;(2)=2a2b+2ab2-2a2b+2-ab2-2=ab2当a=1,b=-3时,ab2=1×(-3)2=9.【点睛】此题主要考查了整式的加减以及有理数的混合运算,正确掌握相关运算法则是解题关键.5、(1);(2)【解析】【详解】(1)(2)【点睛】本题考查了有理数的混合运算,整式的加减运算是解题的关键.
相关试卷
这是一份北京课改版七年级下册第六章 整式的运算综合与测试课后复习题,共17页。试卷主要包含了下列运算中正确的是,下列运算正确的是,多项式+1的次数是,计算的结果是,已知整数等内容,欢迎下载使用。
这是一份数学七年级下册第六章 整式的运算综合与测试练习题,共18页。试卷主要包含了把多项式按的降幂排列,正确的是,不一定相等的一组是,计算的结果是,下列运算正确的是,下列表述正确的是等内容,欢迎下载使用。
这是一份初中北京课改版第六章 整式的运算综合与测试当堂检测题,共15页。试卷主要包含了下列计算正确的是,下列说法不正确的是,下列运算正确的是,若,,,则的值为等内容,欢迎下载使用。