初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步测试题
展开这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步测试题,共17页。试卷主要包含了下列说法正确的是,计算的结果是,下列计算正确的有,下列说法中等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、多项式的次数和常数项分别是( )
A.1和 B.和 C.2和 D.3和
2、下列运算正确的是( )
A. B. C. D.
3、已知动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,第三次向左移动3厘米,第四次向右移动4厘米,……,移动第2022次到达点B,则点B在点A点的( )
A.左侧1010厘米 B.右侧1010厘米
C.左侧1011厘米 D.右侧1011厘米
4、下列说法正确的是( )
A.单项式的次数是3,系数是
B.多项式的各项分别是,,5
C.是一元一次方程
D.单项式与能合并
5、下列各式中,能用平方差公式计算的是( )
A.(a+b)(﹣a﹣b) B.(a+b)(a﹣b)
C.(a+b)(a﹣d) D.(a+b)(2a﹣b)
6、关于单项式﹣,下列说法中正确的是( )
A.系数是﹣ B.次数是4 C.系数是﹣ D.次数是5
7、计算的结果是( )
A. B. C. D.
8、下列计算正确的有( )
① ② ③ ④
A.3个 B.2个 C.1个 D.0个
9、下列说法中:(1)整数与分数统称为有理数;(2)如果两个数的绝对值相等,那么这两个数相等;(3)多项式是五次二项式;(4)倒数等于它本身的数是;(5)与是同类项,其中正确的有( )
A.1个 B.2个 C.3个 D.4个
10、下列说法正确的是( )
A.0不是单项式 B.单项式xy的次数是1
C.单项式的系数是 D.多项式的一次项次数是—1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、下表是2002年12月份的日历,现在用一个长方形在日历中任意框出4个数,请你用一个等式表示之间的关系_________.
2、如图,王老师把家里的密码设置成了数学问题.吴同学来王老师家做客,看到图片,思索了一会儿,输入密码,顺利地连接到了王老师家里的网络,那么她输入的密码是________.
账号:Mr.Wang's house 王 浩 阳密码 |
3、若式子x2+16x+k是一个完全平方式,则k=______.
4、单项式的系数是_______,次数是______.
5、已知a2m﹣n=2,am=3,则an的值是 _____.
三、解答题(5小题,每小题10分,共计50分)
1、先化简,再求值:,其中,.
2、先化简,再求值:,其中,.
3、已知关于x的两个多项式A=x2-8x+3.B=ax-b,且整式A+B中不含一次项和常数项.
(1)求a,b的值;
(2)如图是去年2021年3月份的月历.用带阴影的十字方框覆盖其中5个数字,例如:1,7,8,9,15.现在移动十字方框使其履盖的5个数之和等于9a+6b,则此时十字方框正中心的数是 _____ .
4、已知:A=2a2+3ab﹣2a﹣1,B=a2+ab﹣1
(1)求A﹣2B的值;
(2)a=﹣3,b=时,求A﹣2B的值.
5、(1)如表,方程1,方程2,方程3,...是按照一定规律排列的一列方程,解方程1,并将它的解填在表中的横线处;
序号 | 方程 | 方程的解 |
1 | ﹣(x﹣2)=1 | x= |
2 | ﹣(x﹣3)=1 | x= |
3 | x= | |
... | ... | ... |
(2)方程﹣(x﹣a)=1的解是x=,求a的值.该方程是不是(1)中所给出的一列方程中的一个方程?如果是,它是第几个方程?
---------参考答案-----------
一、单选题
1、D
【分析】
多项式的次数是其中最大的非零项的次数;多项式中不含字母的项是常数项.
【详解】
解:有题意可知多项式的次数为3,常数项为
故选D.
【点睛】
本题考查了多项式的次数和常数项.解题的关键在于正确判断次数所在的项.常数项的符号是易错点.
2、A
【分析】
根据整式的加减运算、同底数幂的乘除运算,幂的乘方运算,求解即可.
【详解】
解:A、,选项正确,符合题意;
B、,选项错误,不符合题意;
C、,选项错误,不符合题意;
D、,选项错误,不符合题意;
故选:A
【点睛】
此题考查了整式的加减运算、同底数幂的乘除运算,幂的乘方运算,解题的关键是掌握整式的有关运算法则.
3、D
【分析】
由动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,则此时对应的数为: 第三次向左移动3厘米,第四次向右移动4厘米,则此时对应的数为: 归纳可得所以每两次移动的结果是往右移动了1个单位长度,结合从而可得答案.
【详解】
解:动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,
则此时对应的数为:
第三次向左移动3厘米,第四次向右移动4厘米,
则此时对应的数为:
所以每两次移动的结果是往右移动了1个单位长度,
所以移动第2022次到达点B,则对应的数为:
所以点B在点A点的右侧1011厘米处.
故选D
【点睛】
本题考查的是数轴上的动点问题,数字的规律探究,有理数的加减运算,除法运算,掌握“从具体到一般的探究方法,再总结规律运用规律”是解本题的关键.
4、C
【分析】
根据单项式的次数和系数的定义、多项式的项的定义、一元一次方程的定义和同类项的定义逐项判断即可.
【详解】
A. 单项式的次数是4,系数是,故该选项错误,不符合题意;
B. 多项式的各项分别是、、-5,故该选项错误,不符合题意;
C. 是一元一次方程,正确,符合题意;
D. 单项式和不是同类项,不能合并,故该选项错误,不符合题意.
故选:C.
【点睛】
本题考查单项式的次数和系数、多项式的项、一元一次方程和同类项.正确掌握各定义是解答本题的关键.
5、B
【分析】
根据平方差公式(a+b)(a﹣b)=a2﹣b2对各选项分别进行判断.
【详解】
解:A、(a+b)(﹣a﹣b)=﹣(a+b)(a+b)两项都相同,不能用平方差公式计算.故本选项不符合题意;
B、(a+b)(a﹣b)存在相同的项与互为相反数的项,能用平方差公式计算,故本选项符合题意;
C、(a+b)(a﹣d)中存在相同项,没有相反项,不能用平方差公式计算.故本选项不符合题意;
D、(a+b)(2a﹣b)中存在相反项,没有相同项,不能用平方差公式计算.故本选项不符合题意;
故选:B.
【点睛】
本题考查了平方差公式.运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.
6、C
【分析】
根据单项式的基本性质:单项式的次数(单项式中所以字母的指数的和)、系数(单项式中的数字因式)的定义解答即可.
【详解】
解:单项式的系数是,次数是.
故选:C.
【点睛】
本题考查了单项式的次数和系数,深刻理解单项式的次数和系数的定义是解题关键.
7、A
【分析】
先计算乘方,再计算除法,即可求解.
【详解】
解:.
故选:A
【点睛】
本题主要考查了幂的混合运算,熟练掌握幂的乘方,同底数相除的法则是解题的关键.
8、B
【分析】
括号前为正号,去括号不变号;若为符号,去括号变号;提取公因式,合并同类项.
【详解】
解:,所以正确,符合题意;
,所以错误,不符合题意;
,所以错误,不符合题意;
,所以正确,符合题意.
故选B.
【点睛】
本题考查了整式加减运算中的去括号与合并同类项.解题的关键找出同类项,正确的去括号.
9、C
【分析】
根据有理数的定义及其分类标准,和绝对值、倒数的意义,多项式的定义,同类项的定义进行辨析即可.
【详解】
解:(1)整数与分数统称为有理数,说法正确;
(2)如果两个数的绝对值相等,那么这两个数相等或互为相反数,原说法错误;
(3)多项式是三次二项式,原说法错误;
(4)倒数等于它本身的数是,说法正确;
(5)与是同类项,说法正确;
综上,说法正确的有(1)(4)(5),共3个,
故选:C.
【点睛】
本题考查了多项式,倒数,有理数以及同类项,掌握相关定义是解答本题的关键.同类项的定义:所含字母相同且相同字母的指数也相同的项是同类项;多项式的次数是多项式中次数最高的单项式的次数;乘积是1的两个数互为倒数.
10、C
【分析】
根据单项式的判断,单项式的系数与次数,多项式的次数、项数等概念逐项分析判断即可
【详解】
解:A. 0是单项式,故该选项不正确,不符合题意;
B. 单项式xy的次数是2,故该选项不正确,不符合题意;
C. 单项式的系数是,故该选项正确,符合题意;
D. 多项式的一次项次数是2,故该选项不正确,不符合题意;
故选C
【点睛】
本题考查了单项式的判断,单项式的系数与次数,多项式的次数、项数等概念,掌握以上知识是解题的关键.单项式中,所有字母的指数和叫单项式的次数,数字因数叫单项式的系数,单项式中所有字母的指数的和叫做它的次数,通常系数不为0,应为有理数, 多项式的每一项都有次数,其中次数最高的项的次数,就是这个多项式的次数,一个多项式的项数就是合并同类项后用“+”或“-”号之间的多项式个数,次数就是次数和最高的那一项的次数; 一个多项式中,次数最高的项的次数,叫做这个多项式的次数;多项式的项数就是多项式中包含的单项式的个数.
二、填空题
1、d-c=b-a
【分析】
此题可以有多种表示方法:①横向来看,左右两个数的差都是1;②纵向看,上下两个数字的差相等;③对角线的角度看,两个数字的和相等.
【详解】
解:d-c=b-a(答案不唯一).
故答案为:d-c=b-a.
【点睛】
本题考查了数字变化规律,熟悉生活中的一些常识,能够把数学和生活密切联系起来.从所给材料中分析数据得出规律是应该具备的基本数学能力.
2、yang8888
【分析】
根据题中wifi密码规律确定出所求即可.
【详解】
解:阳阳
故答案为:yang8888.
【点睛】
此题考查了同底数幂相乘和幂的乘方,熟练掌握运算法则是解本题的关键.
3、64
【分析】
根据完全平方公式解答即可.
【详解】
解:∵(x+8)2=x2+16x+64=x2+16x+k,
∴k=64.
故填64.
【点睛】
本题主要考查了完全平方公式,掌握完全平方公式的结构特点成为解答本题的关键.
4、 2
【分析】
根据单项式的次数与系数的定义解决此题.
【详解】
解:根据单项式的次数与系数的定义,单项式系数是,次数是2.
故答案为:,2.
【点睛】
本题主要考查单项式的次数与系数,熟练掌握单项式的次数与系数的定义是解决本题的关键.单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.
5、
【分析】
根据同底数幂的运算法则及幂的乘方即可求出答案.
【详解】
解:∵,,
∴,
∴,
,
,
故答案为:.
【点睛】
题目主要考查同底数幂的除法及幂的乘方,熟练掌握运算法则,学会变形是解题关键.
三、解答题
1、,
【解析】
【分析】
根据整式的加减运算法则先化简再求值即可.
【详解】
解:.
当,时,原式.
【点睛】
本题考查整式的加减运算,熟练掌握该知识点是解题关键.
2、,-12
【解析】
【分析】
先去括号合并同类项,再把,代入计算.
【详解】
解:
=
=,
当,时,
原式=
=-6-6
=-12.
【点睛】
本题考查了整式的加减-化简求值,一般先把所给整式去括号合并同类项,再把所给字母的值或代数式的值代入计算.
3、(1)a=8,b=3;(2)18
【解析】
【分析】
(1)把A与B代入A+B中,去括号合并后由结果不含一次项与常数项求出a与b的值即可;
(2)设十字方框正中心的数是m,根据题意列出方程,解方程即可.
【详解】
解:(1)∵A=x2-8x+3.B=ax-b,
∴A+B=x2-8x+3+ ax-b=x2+(-8+a)x-b+3,
由结果中不含一次项和常数项,得到-8+a=0,-b+3=0,
解得:a=8,b=3;
(2)设十字方框正中心的数是m,则它上面的数为m-7,它下面的数为m+7,它左面的数为m-1,它右面的数为m+1,列方程得,
,
∵a=8,b=3;
∴,
解得,;
故答案为:18
【点睛】
本题考查了整式的运算和一元一次方程的应用,解题关键是明确不含某项是只该项的系数为0,找出日历中数字关系,列出方程.
4、(1)ab﹣2a+1;(2)5
【解析】
【分析】
(1)将已知整式代入,然后去括号,合并同类项进行化简;
(2)将已知字母的值代入(1)中的化简结果,从而求值.
【详解】
解:(1)∵A=2a2+3ab﹣2a﹣1,B=a2+ab﹣1,
∴A﹣2B=2a2+3ab﹣2a﹣1-2(a2+ab﹣1)
=2a2+3ab﹣2a﹣1﹣2a2-2ab+2
=ab﹣2a+1;
(2)当a=﹣3,b=时,
原式=.
【点睛】
本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.
5、(1);(2),方程是(1)中所给出的一列方程中的一个方程,且是第11个方程.
【解析】
【分析】
(1)根据去括号,移项,合并,系数化为1的步骤求解即可;
(2)把代入方程中求出a的值,然后找出(1)中方程的规律即可得到答案.
【详解】
解:(1)
去括号得:,
移项得:,
合并得:,
系数化为1得:,
故答案为:;
(2)∵方程的解是,
∴,
∴,
解得,
∵方程的解为,
方程的解为,
方程的解为,
∴方程的解为,
∴方程是(1)中所给出的一列方程中的一个方程,且是第11个方程.
【点睛】
本题主要考查了解一元一次方程,数字类的规律型探索,解题的关键在于能够熟练掌握解一元一次方程的方法.
相关试卷
这是一份数学七年级下册第六章 整式的运算综合与测试课后作业题,共17页。试卷主要包含了下列式子,下列计算正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试练习题,共15页。试卷主要包含了下列计算正确的是,下列运算正确的是,多项式+1的次数是,计算的结果是,下列运算中正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试课后测评,共18页。试卷主要包含了下列计算正确的是,下列运算正确的是等内容,欢迎下载使用。