数学第六章 整式的运算综合与测试同步训练题
展开
这是一份数学第六章 整式的运算综合与测试同步训练题,共22页。试卷主要包含了下列计算中,正确的是,下列计算正确的是,观察下列各式,下列运算正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点M在线段AN的延长线上,且线段MN=20,第一次操作:分别取线段AM和AN的中点M1,N1;第二次操作:分别取线段AM1和AN1的中点M2,N2;第三次操作:分别取线段AM2和AN2的中点M3,N3;…连续这样操作10次,则M10N10=( )A.2 B. C. D.2、下列计算正确的有( )① ② ③ ④A.3个 B.2个 C.1个 D.0个3、如图是一组有规律的图案,第1个图案中有8个小正方形,第2个图案中有12个小正方形,第3个图案中有16个小正方形,…,依此规律,若第n个图案中有2400个小正方形,则n的值为( )A.593 B.595 C.597 D.5994、下列计算中,正确的是( )A. B.C. D.5、如图所示,把同样大小的黑色棋子分别摆放在正多边形(正三角形、正四边形、正五边形、正六边形…)的边上,按照这样的规律继续摆放下去…,则第5个图形需要黑色棋子的个数是 ( )A.30 B.33 C.35 D.426、下列计算正确的是( )A.a+3a=4a B.b3•b3=2b3 C.a3÷a=a3 D.(a5)2=a77、观察下列各式:(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72;….请你根据观察得到的规律判断下列各式中正确的是( )A.1005+1006+1007+…+3016=20112B.1005+1006+1007+…+3017=20112C.1006+1007+1008+…+3016=20112D.1006+1008+1009+…+3017=201128、下列运算正确的是( )A. B.C. D.9、下列运算正确的是( )A.x2+x2=2x4 B.x2∙x3=x6 C.(x2)3=x6 D.(-2x)2=-4x210、已知:x2﹣2x﹣5=0,当y=1时,ay3+4by+3的值等于4,则当y=﹣1时,﹣2(x+2by)+(x2﹣ay3)的值等于( )A.1 B.9 C.4 D.6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,用火柴棒摆“金鱼”,按照这样的规律,摆第n条“金鱼”需用火柴棒的根数为_____.
2、已知关于x、y的多项式(a+b)+(a-3)-2(b+2)+2ax+1不含项,则当x=-1时,这个多项式的值为__________.3、用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第21个图案需要棋子_______枚.4、如图,王老师把家里的密码设置成了数学问题.吴同学来王老师家做客,看到图片,思索了一会儿,输入密码,顺利地连接到了王老师家里的网络,那么她输入的密码是________.账号:Mr.Wang's house王浩阳密码 5、将边长为的正方形沿虚线剪成两个正方形和两个长方形,若去掉边长为的小长方形后,再将剩下的三块拼成一个长方形,则这个长方形的周长为__________.三、解答题(5小题,每小题10分,共计50分)1、(1)如表,方程1,方程2,方程3,...是按照一定规律排列的一列方程,解方程1,并将它的解填在表中的横线处;序号方程方程的解1﹣(x﹣2)=1x= 2﹣(x﹣3)=1x=3x=.........(2)方程﹣(x﹣a)=1的解是x=,求a的值.该方程是不是(1)中所给出的一列方程中的一个方程?如果是,它是第几个方程?2、先化简,再求值:,其中,.3、先化简,再求值:,其中.4、如图1是一个长为、宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形. (1)观察图2,请你直接写出下列三个代数式之间的等量关系为_______;(2)运用你所得到的公式解答下列问题:①若为实数,且,,求的值.②如图3,,分别表示边长为的正方形的面积,且三点在一条直线上,若,求图中阴影部分的面积.5、【教材呈现】人教版八年级上册数学教材第112页的第7题:已知,,求的值.【例题讲解】老师讲解了这道题的两种方法:方法一方法二∵,∴.∴.∵,∴.∵,∵,∵,,∴. 【方法运用】请你参照上面两种解法,解答以下问题.(1)已知,,求的值;(2)已知,求的值.【拓展提升】如图,在六边形中,对角线和相交于点G,当四边形和四边形都为正方形时,若,正方形和正方形的面积和为36,直接写出阴影部分的面积. ---------参考答案-----------一、单选题1、C【分析】根据线段中点定义先求出M1N1的长度,再由M1N1的长度求出M2N2的长度,从而找到MnNn的规律,即可求出结果.【详解】解:∵线段MN=20,线段AM和AN的中点M1,N1,∴M1N1=AM1﹣AN1=AM﹣AN=(AM﹣AN)=MN=×20=10.∵线段AM1和AN1的中点M2,N2;∴M2N2=AM2﹣AN2=AM1﹣AN1=(AM1﹣AN1)=M1N1=××20=×20=5.发现规律:MnNn=×20,∴M10N10=×20.故选:C.【点睛】本题考查两点间的距离,根据线段中点的定义得出MnNn=×20是解题关键.2、B【分析】括号前为正号,去括号不变号;若为符号,去括号变号;提取公因式,合并同类项.【详解】解:,所以正确,符合题意;,所以错误,不符合题意;,所以错误,不符合题意; ,所以正确,符合题意.故选B.【点睛】本题考查了整式加减运算中的去括号与合并同类项.解题的关键找出同类项,正确的去括号.3、D【分析】根据第1个图案中有8个小正方形,第2个图案中有12个小正方形,第3个图案中有16个小正方形……依此规律即可得出答案.【详解】解:第1个图案中小正方形的个数为:8,第2个图案中小正方形的个数为:,第3个图案中小正方形的个数为:……依此规律,第个图案中小正方形的个数为:. ∴,解得,故选D【点睛】本题主要考查了图形规律题,解题的关键是找出它们之间的变化规律,按照这一变化规律进行解答即可.4、D【分析】根据完全平方公式可判断A,根据同底数幂的乘法同底数幂相乘底数不变指数相加可判断B,根据同底数幂除法运算法则同底数幂相乘底数不变指数相减可判断C,根据积的乘方每个因式分别乘方与幂的乘方法则底数不变指数相乘可判断D.【详解】A. ,故选项A不正确; B. ,故选项B不正确;C. ,故选项C不正确;D. ,故选项D正确.故选:D.【点睛】本题考查整式中幂指数运算与乘法公式,掌握整式中幂指数运算与乘法公式是解题关键.5、C【分析】由图可知:第1个图形需要黑色棋子的个数是2×3-3=3,第2个图形需要黑色棋子的个数是3×4-4=8,第3个图形需要黑色棋子的个数是4×5-5=15,…按照这样的规律摆下去,则第5个图形需要黑色棋子的个数是再计算即可得到答案.【详解】解:∵第1个图形需要黑色棋子的个数是2×3-3=3, 第2个图形需要黑色棋子的个数是3×4-4=8, 第3个图形需要黑色棋子的个数是4×5-5=15, … ∴第5个图形需要黑色棋子的个数是. 故选:C.【点睛】本题考查图形的变化规律,掌握“从具体的实例出发,列出具有相同规律的运算式,从而发现规律”是解题的关键.6、A【分析】根据合并同类项判断A选项;根据同底数幂的乘法判断B选项;根据同底数幂的除法判断C选项;根据幂的乘方判断D选项.【详解】解:A选项,原式=4a,故该选项符合题意;B选项,原式=b6,故该选项不符合题意;C选项,原式=a2,故该选项不符合题意;D选项,原式=a10,故该选项不符合题意;故选:A.【点睛】此题考查了整式的计算:合并同类项、同底数幂乘法、同底数幂除法、幂的乘方法则,熟记各法则是解题的关键.7、C【分析】根据已知条件找出数字规律:第n个等式是n+(n+1)+(n+2)+…+(n+2n-2)=(2n-1)2,其中n为正整数,依次判断各个式子即可得出结果.【详解】解:根据(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=7×7
可得出:n+(n+1)+(n+2)+…+(n+2n-2)=(2n-1)2,∴1005+1006+1007+…+3013=200921006+1007+1008+…+3016=20112 ,故选C.【点睛】本题主要考查了数字类的规律探索,解题的关键在于能够根据题意找到规律求解.8、C【分析】根据同底数幂的乘除法法则以及积的乘方法则,幂的乘方法则,逐一判断选项,即可.【详解】解:A. ,故该选项错误, B. ,故该选项错误, C. ,故该选项正确, D. ,故该选项错误,故选C.【点睛】本题主要考查同底数幂的乘除法法则以及积的乘方法则,熟练掌握上述法则是解题的关键.9、C【分析】根据合并同类项,同底数幂相乘,幂的乘方,积的乘方法则逐项判断即可求解.【详解】解:A、 ,故本选项错误,不符合题意;B、 ,故本选项错误,不符合题意;C、 ,故本选项正确,符合题意;D、 ,故本选项错误,不符合题意;故选:C【点睛】本题主要考查了合并同类项,同底数幂相乘,幂的乘方,积的乘方,熟练掌握合并同类项,同底数幂相乘,幂的乘方,积的乘方法则是解题的关键.10、D【分析】根据题意得到a+4b=1,x2﹣2x=5,当y=﹣1时可得出﹣2(x+2by)+(x2﹣ay3)=﹣2x+4b+x2+a,最后将x2﹣2x=5,a+4b=1代入该式即可求出答案.【详解】解:当y=1时,ay3+4by+3=a+4b+3=4,∴a+4b=1,∵x2﹣2x﹣5=0, ∴x2﹣2x=5,当y=﹣1时,﹣2(x+2by)+(x2﹣ay3)=﹣2x﹣4by+x2﹣ay3=﹣2x+4b+x2+a∵a+4b=1,x2﹣2x=5,∴﹣2x+4b+x2+a=﹣2x+x2+a+4b=5+1=6.故选:D【点睛】本题考查了求代数式的值,根据题意得到a+4b=1,x2﹣2x=5,并整体代入是解题关键.二、填空题1、6n+2【分析】由题意可知:每增加一个金鱼就增加6根火柴棒,由此规律得出答案即可.【详解】解:第一个金鱼需用火柴棒的根数为:2+6=8;第二个金鱼需用火柴棒的根数为:2+2×6=14;第三个金鱼需用火柴棒的根数为:2+3×6=20;…;第n个金鱼需用火柴棒的根数为:2+n×6=6n+2.故答案为:6n+2.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题.2、-6【分析】根据多项式里面不含项,直接令项的系数为0,求出、的值,再将、、的值代入多项式中,求出多项式的值即可.【详解】解:多项式里面不含项,,,即,, 原多项式化简为:, 将x=-1代入多项式中,求得多项式的值为:,故答案为:.【点睛】本题主要是考查了整式加减中的无关项问题,解题的关键在于熟练掌握整式的加减计算法则以及不含某项即某项的系数为0.3、【分析】图案中,黑色棋子个数为;图案中,黑色棋子个数为;图案中,黑色棋子个数为;得出规律,进而求解出图案中,黑色棋子个数.【详解】解:图案中,黑色棋子个数为;图案中,黑色棋子个数为;图案中,黑色棋子个数为;得出规律为图案中,黑色棋子个数为;当时,黑色棋子个数为故答案为:.【点睛】本题主要考察了总结规律.解题的关键在于是否能够根据数据的特征推导出规律.4、yang8888【分析】根据题中wifi密码规律确定出所求即可.【详解】解:阳阳故答案为:yang8888.【点睛】此题考查了同底数幂相乘和幂的乘方,熟练掌握运算法则是解本题的关键.5、12a【分析】根据题意和矩形的性质列出代数式解答即可.【详解】解:新长方形的周长=2[(3a+2b)+(3a-2b)]=12a故答案为:12a【点睛】本题考查了正方形和长方形的边长之间的关系,学生可以通过操作进行解决问题.三、解答题1、(1);(2),方程是(1)中所给出的一列方程中的一个方程,且是第11个方程.【解析】【分析】(1)根据去括号,移项,合并,系数化为1的步骤求解即可;(2)把代入方程中求出a的值,然后找出(1)中方程的规律即可得到答案.【详解】解:(1)去括号得:,移项得:,合并得:,系数化为1得:,故答案为:;(2)∵方程的解是,∴,∴,解得,∵方程的解为,方程的解为,方程的解为,∴方程的解为,∴方程是(1)中所给出的一列方程中的一个方程,且是第11个方程.【点睛】本题主要考查了解一元一次方程,数字类的规律型探索,解题的关键在于能够熟练掌握解一元一次方程的方法.2、,【解析】【分析】根据整式的加减运算法则先化简再求值即可.【详解】解:.当,时,原式.【点睛】本题考查整式的加减运算,熟练掌握该知识点是解题关键.3、,2【解析】【分析】先去括号,合并同类项,再将未知数的值代入计算.【详解】解:原式==,当时,原式=2.【点睛】此题考查了整式的化简求值,掌握整式的加减法计算法则是解题的关键.4、(1)(a+b)2=4ab+(a﹣b)2;(2)①m﹣n=4或m﹣n=﹣4;②阴影部分面积为8.【解析】【分析】(1)结合图形可得:大正方形面积=四个矩形的面积+中间小正方形的面积,表示出各个图形的面积,三者关系式即可得;(2)①根据(1)中结论可得:,然后将已知式子的值代入化简即可;②根据题意可得:,且,将其代入完全平方公式中化简可得:,结合图形,求阴影部分面积即可.【详解】解:(1)由图可知,大正方形面积=四个矩形的面积+中间小正方形的面积,即,故答案为:;(2)①∵,,∴,∴,∴或;②∵,分别表示边长为p,q的正方形的面积,∴,,∵,∴,∵,∴∴,,∴, 由图可知,阴影部分面积为:,∴阴影部分面积为8.【点睛】题目主要考查完全平方公式在求几何图形面积中的应用,理解题意,结合图形,熟练运用两个完全平方公式的变形是解题关键.5、(1);(2);拓展提升:阴影部分的面积为14.【解析】【分析】(1)根据已知例题变换完全平方公式即可得;(2)将两个完全平方公式进行变换即可得; 拓展提升:根据图形可得,,结合题意,应用完全平方公式的变形可得,由正方形四条边相等及阴影部分的面积公式,代入求解即可得.【详解】解:(1)∵,∴,∵,∴,∴;(2)∵,∴,∵,∴;拓展提升:∵,∴由图可得:,∴,∵,∴,∴,∵四边形ABGF和四边形CDEG为正方形,∴,,,∴阴影部分的面积为14.【点睛】题目主要考查完全平方公式的运用及变形,理解题中例题,综合运用两个完全平方公式是解题关键.
相关试卷
这是一份2021学年第六章 整式的运算综合与测试随堂练习题,共19页。试卷主要包含了下列运算正确的是,下列判断正确的是,下列说法不正确的是,下列等式成立的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试综合训练题,共18页。试卷主要包含了把多项式按的降幂排列,正确的是,下列运算正确的是,观察下列这列式子,下列等式成立的是等内容,欢迎下载使用。
这是一份2021学年第六章 整式的运算综合与测试课时练习,共17页。试卷主要包含了计算的结果是,下列说法正确的是,下列计算正确的是,已知下列一组数等内容,欢迎下载使用。