初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步达标检测题
展开
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步达标检测题,共17页。试卷主要包含了下列运算正确的是,下列表述正确的是,下列式子正确的是,单项式的系数和次数分别是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、数左手手指,1为大拇指,数到第2011时对应的手指是( )A.无名指 B.食指 C.中指 D.大拇指2、下列计算正确的是( )A. B.C. D.3、下列计算中,结果正确的是( )A.B.C.D.4、对于任意实数m,n,如果满足,那么称这一对数m,n为“完美数对”,记为(m,n).若(a,b)是“完美数对”,则3(3a+b)-(a+b-2)的值为 ( )A.﹣2 B.0 C.2 D.35、下列运算正确的是( )A.x2+x2=2x4 B.x2∙x3=x6 C.(x2)3=x6 D.(-2x)2=-4x26、下列表述正确的是( )A.单项式ab的系数是0,次数是2 B.的系数是,次数是3C.是一次二项式 D.的项是,3a,17、下列式子正确的是( )A. B.C. D.8、下列运算正确的是( )A. B. C. D.9、单项式的系数和次数分别是( )A.-2,5 B.,5 C.,2 D.,210、下列说法不正确的是( )A.的系数是 B.2不是单项式C.单项式的次数是2 D.是多项式第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、有一列按规律排列的代数式:b,2b﹣a,3b﹣2a,4b﹣3a,5b﹣4a,…,相邻两个代数式的差都是同一个整式,若第1011个代数式的值为3,则前2021个代数式的和的值为_______.2、已知x-2y+3=0,则代数式4y-2x-1的值为________.3、若多项式3xa+3﹣x3﹣a+4是四次三项式,则a=____.4、用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第21个图案需要棋子_______枚.5、有若干个大小形状完全相同的小长方形现将其中4个如图1摆放,构造出一个正方形,其中阴影部分面积为34;其中5个如图2摆放,构造出一个长方形,其中阴影部分面积为100(各个小长方形之间不重叠不留空),则每个小长方形的面积为______.
三、解答题(5小题,每小题10分,共计50分)1、计算:(1);(2);(3);(4).2、先化简,再求值: ;其中,.3、计算:.4、先化简,再求值:,其中,.5、阅读下列材料:1×2=(1×2×3﹣0×1×2);2×3=(2×3×4﹣1×2×3);3×4=(3×4×5﹣2×3×4);由以上三个等式相加,可得:1×2+2×3+3×4=×3×4×5=20.读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+19×20(写出过程).(2)猜想:1×2+2×3+3×4+…+n(n+1)= .(3)探究计算:1×2×3+2×3×4+3×4×5+…+17×18×19. ---------参考答案-----------一、单选题1、C【分析】根据题意可得::第一次是五个数,以后每一次都是四个数,所以先减去1,可得每两个循环是“食指、中指、无名指、小拇指、无名指、中指、食指、大拇指”,从而得到2011是从2开始的第2011﹣1=2010个数,可得2011是第503个循环组的第2个数,即可求解.【详解】解:根据题意得:第一次是五个数,以后每一次都是四个数,所以先减去1,可得每两个循环是“食指、中指、无名指、小拇指、无名指、中指、食指、大拇指”,∵2011是从2开始的第2011﹣1=2010个数,∴2010÷8=251…2,∴2011是第252个循环组的第2个数,∴第2011与3的位置相同,即中指的位置.故选:C【点睛】本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键.2、C【分析】根据幂的运算及整式的乘法运算即可作出判断.【详解】A、,故计算不正确;B、,故计算不正确;C、,故计算正确;D、,故计算不正确.故选:C【点睛】本题考查了同底数幂的除法、积的乘方、同类项合并、单项式乘多项式等知识,掌握这些知识是关键.3、D【分析】所含字母相同,相同字母的指数也相同的单项式是同类项,根据同类项的概念与合并同类项的法则可判断A,C,D,再利用去括号的法则判断B,从而可得答案.【详解】解:不是同类项,故A不符合题意;故B不符合题意;不是同类项,故C不符合题意;故D符合题意;故选D【点睛】本题考查的是合并同类项,去括号,掌握“同类项的概念及合并同类项的法则,去括号的法则”是解本题的关键.4、C【分析】先根据“完美数对”的定义,从而可得,再去括号,计算整式的加减,然后将整体代入即可得.【详解】解:由题意得:,即,则,,,,,故选:C.【点睛】本题考查了整式加减中的化简求值,掌握理解“完美数对”的定义是解题关键.5、C【分析】根据合并同类项,同底数幂相乘,幂的乘方,积的乘方法则逐项判断即可求解.【详解】解:A、 ,故本选项错误,不符合题意;B、 ,故本选项错误,不符合题意;C、 ,故本选项正确,符合题意;D、 ,故本选项错误,不符合题意;故选:C【点睛】本题主要考查了合并同类项,同底数幂相乘,幂的乘方,积的乘方,熟练掌握合并同类项,同底数幂相乘,幂的乘方,积的乘方法则是解题的关键.6、C【分析】直接利用单项式的次数与系数以及多项式的特点分别分析得出答案.【详解】解:A.单项式ab的系数是1,次数是2,故此选项不合题意;B.的系数是,次数是5,故此选项不合题意;C.x−1是一次二项式,故此选项符合题意;D.的项是,3a,−1,故此选项不合题意;故选:C.【点睛】此题主要考查了多项式和单项式,正确掌握单项式的次数确定方法是解题关键.7、D【分析】根据去括号法则可直接进行排除选项.【详解】解:A、,原选项错误,故不符合题意;B、,原选项错误,故不符合题意;C、,原选项错误,故不符合题意;D、,原选项正确,故符合题意;故选D.【点睛】本题主要考查去括号,熟练掌握去括号法则是解题的关键.8、D【分析】根据整式的运算法则逐项检验即可.【详解】解:A、b2与b3不是同类项,不能合并,故该选项不符合题意;B、,原计算错误,故该选项不符合题意;C、,原计算错误,故该选项不符合题意;D、,正确,故该选项符合题意;故选:D.【点睛】本题考查了合并同类项,同底数幂的乘法除法,积的乘方等整式的相关运算法则,能够熟记基本的运算法则并灵活运用,正确计算是解决本题的关键.9、B【分析】根据单项式系数及次数定义解答.【详解】解:单项式的系数和次数分别是,2+1+2=5,故选:B.【点睛】此题考查了单项式的次数及系数的定义,熟记定义是解题的关键.10、B【分析】单项式:数字与字母的积,单个的数或单个的字母也是单项式,其中的数字因数是单项式的系数,单项式中所有字母的指数和是单项式的次数,几个单项式的和是多项式,根据定义逐一分析即可.【详解】解:的系数是,故A不符合题意;2是单项式,原说法错误,故B符合题意;单项式的次数是2,故C不符合题意;是多项式,故D不符合题意;故选B【点睛】本题考查的是单项式的定义,单项式的系数与次数,多项式的概念,掌握以上基础概念是解本题的关键.二、填空题1、6063【分析】相邻两个代数式的差都是b-a,且第1011个代数式的值为1011b-1010a=3,将前2021个代数式全部求出后,求出它们的和后将1011b-1010a代入即可求出答案.【详解】解:由题意可知:第1011个代数式的值为1011b-1010a=3第2020个代数式为:2020b-2019a,第2021个代数式为:2021b-2020a,∴前2021个代数式的和的值:b+(2b-a)+…+(2021b-2020a)=(1+2+3+⋯+2021)b-(1+2+3+⋯+2020)a=2021(1011b-1010a)=2021×3=6063故答案为:6063【点睛】本题考查代数式求值,解题的关键是将前2021个代数式的和进行化简.2、5【分析】先根据已知等式可得,再将其作为整体代入计算即可得.【详解】解:由得:,则,,,故答案为:5.【点睛】本题考查了代数式求值,熟练掌握整体思想是解题关键.3、﹣【分析】根据题意可得:①a+3=4,4≥3−a≥0,②3−a=4,且4≥a+3≥0,再解方程和不等式可得答案.【详解】解:由题意得:①a+3=4,4≥3﹣a≥0,解得:a=1,②3﹣a=4,且4≥a+3≥0,解得:a=﹣1,故答案为:﹣1或1.【点睛】此题主要考查了多项式,关键是掌握多项式中次数最高的项的次数叫做多项式的次数.4、【分析】图案中,黑色棋子个数为;图案中,黑色棋子个数为;图案中,黑色棋子个数为;得出规律,进而求解出图案中,黑色棋子个数.【详解】解:图案中,黑色棋子个数为;图案中,黑色棋子个数为;图案中,黑色棋子个数为;得出规律为图案中,黑色棋子个数为;当时,黑色棋子个数为故答案为:.【点睛】本题主要考察了总结规律.解题的关键在于是否能够根据数据的特征推导出规律.5、8【分析】设长方形的长为a,宽为b,由图1可得,(a+b)2-4ab=34,由图2可得,(2a+b)(a+2b)-5ab=100,再利用整体思想进行变形求解即可.【详解】解:设长方形的长为a,宽为b, 由图1可得,(a+b)2-4ab=34, 即a2+b2=2ab+34①, 由图2可得,(2a+b)(a+2b)-5ab=100, 即a2+b2=50②, 由①②得,2ab+34=50, 所以ab=8, 即长方形的面积为8, 故答案为:8.【点睛】本题考查的是完全平方公式,多项式乘以多项式在几何图形中的应用,熟练的应用整式的乘法运算解决问题是解本题的关键.三、解答题1、(1)-11;(2)5;(3);(4)x2.【解析】【分析】(1)由题意先将减法统一成加法,然后再计算;(2)根据题意先将除法统一成乘法,然后再计算;(3)由题意先算乘方,然后算乘除,最后算加减;(4)根据题意先去括号,然后合并同类项进行化简即可.【详解】解:(1)=5+3+(-7)+(-12)=8+(-7)+(-12)=1+(-12)=-(12-1)=-11;(2)==5;(3)===;(4)==x2.【点睛】本题主要考查有理数的混合运算,整式的加减运算,注意明确有理数混合运算顺序(先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算),合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“-”号,去掉“-”号和括号,括号里的各项都变号)是解题的关键.2、x2y+5xy2,42.【解析】【分析】先运用去括号法则去括号,然后合并同类项,化简整式,最后代入求值即可.【详解】解:原式=4x2y-xy2-3x2y+6xy2=x2y+5xy2.当x=3,y=-2时,原式=32(-2)+53(-2)2=-18+60=42.【点睛】本题考查了整式加减的化简求值.去括号时应注意:①不要漏乘;②括号前面是“-”,去括号后括号里面的各项都要变号.3、【解析】【分析】根据整式的乘法运算法则、合并同类项法则进行计算即可.【详解】解:==.【点睛】本题考查整式的乘除、合并同类项,熟练掌握运算法则是解答的关键.4、【解析】【分析】先利用乘法公式以及单项式乘多项式去括号,然后合并同类项,最后利用整式除法,求出化简结果,字母的值代入化简结果,求出整式的值.【详解】解:当,时,原式.【点睛】本题主要是考查了整式的化简求值,熟练掌握乘法公式、单项式乘多项式去括号以及整式除法法则,是求解该题的关键.5、(1)2660;过程见解析;(2)[n×(n+1)×(n+2)];(3)29070.【解析】【分析】(1)根据题意规律进行解答即可;(2)根据题意规律进行解答即可;(3)仿照(1)(2)可得中的规律进行解答即可.【详解】(1)1×2+2×3+3×4+…+19×20=(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)+…+(19×20×21﹣18×19×20)=(19×20×21)=19×20×7=2660;(2)1×2+2×3+3×4+…+n(n+1)=(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)+…+ [n×(n+1)×(n+2)﹣(n﹣1)×n×(n+1)]= [n×(n+1)×(n+2)],故答案为: [n×(n+1)×(n+2)];(3)1×2×3+2×3×4+3×4×5+…+17×18×19=(1×2×3×4﹣0×1×2×3)+(2×3×4×5﹣1×2×3×4)+(3×4×5×6﹣2×3×4×5)+…+(17×18×19×20﹣16×17×18×19)=(17×18×19×20)=29070.【点睛】本题考查了数字的变化规律,根据所给式子,探索式子的一般规律,并能准确计算是解题的关键.
相关试卷
这是一份数学七年级下册第六章 整式的运算综合与测试课时训练,共16页。试卷主要包含了有理数a,下列运算正确的是,下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试习题,共19页。试卷主要包含了已知整数,下列运算中正确的是,观察下列各式,下列结论中,正确的是等内容,欢迎下载使用。
这是一份2020-2021学年第六章 整式的运算综合与测试课时作业,共16页。试卷主要包含了下列计算正确的是,若,,求的值是,下列关于整式的说法错误的是,下列运算正确的是等内容,欢迎下载使用。