数学七年级下册第六章 整式的运算综合与测试练习
展开这是一份数学七年级下册第六章 整式的运算综合与测试练习,共17页。试卷主要包含了下列关于整式的说法错误的是,下列运算中,正确的是,下列式子正确的等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列式子正确的是( )
A. B.
C. D.
2、下列叙述中,正确的是( )
A.单项式的系数是
B.a,π,52都是单项式
C.多项式3a3b+2a2﹣1的常数项是1
D.是单项式
3、下列各式中,计算结果为的是( )
A. B.
C. D.
4、下列关于整式的说法错误的是( )
A.单项式的系数是-1 B.单项式的次数是3
C.多项式是二次三项式 D.单项式与ba是同类项
5、对于任意实数m,n,如果满足,那么称这一对数m,n为“完美数对”,记为(m,n).若(a,b)是“完美数对”,则3(3a+b)-(a+b-2)的值为 ( )
A.﹣2 B.0 C.2 D.3
6、下列运算中,正确的是( )
A.a2a3a2 B.2p(p)3p C.mm0 D.
7、下列式子正确的( )
A.x﹣(y﹣z)=x﹣y﹣z
B.﹣(a﹣b)﹣(﹣c﹣d)=﹣a+b+c+d
C.x﹣2(z+y)=x﹣2y﹣2
D.﹣(x﹣y+z)=﹣x﹣y﹣z
8、若x2+mxy+25y2是一个完全平方式,那么m的值是( )
A.±10 B.-5 C.5 D.±5
9、已知一个正方形的边长为a+1,则该正方形的面积为( )
A.a2+2a+1 B.a2-2a+1 C.a2+1 D.4a+4
10、下列运算正确的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、观察下面一列数,1,2,﹣3,﹣4,5,6,﹣7,﹣8,9,10,﹣11,﹣12,…则这列数的第2013个数是______.
2、利用一边为另一边为的等腰三角形做拼图游戏,按照如图所示的方式组合,当使用第个等腰三角形时,所拼成的图形的周长为___________.
3、数a,b在数轴上的位置如图所示,化简:|b﹣a|+|b|=______.
4、若a+b=3,ab=1,则(a﹣b)2=________.
5、单项式22a6b3的系数是_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在长方形ABCD中,AD=8,DC=6,点M是边AB的中点,动点P以每秒1个单位长度的速度从点A出发沿AD向终点D运动.设运动时间为t秒.
(1)用含t的代数式表示线段PD= ;
(2)求阴影部分的面积(用含t的代数式表示);
(3)当t=5秒时,求出阴影部分的面积.
2、已知多项式,.
(1)化简:;
(2)当,时,求的值.
3、(1)已知多项式的值与字母x的取值无关,求多项式的值.
(2)当时,多项式的值为5,当时,多项式的值是多少?
4、已知a2+b2=3,ab=﹣2,求代数式(7a2+3ab+3b2)﹣2(4a2+3ab+2b2)的值.
5、(1)合并同类项:﹣3x+2y﹣5x﹣7y
(2)化简求值:(8mn﹣3m2)﹣5mn﹣2(3nm﹣2m2),其中m=﹣1,n=﹣2
---------参考答案-----------
一、单选题
1、D
【分析】
根据去括号法则可直接进行排除选项.
【详解】
解:A、,原选项错误,故不符合题意;
B、,原选项错误,故不符合题意;
C、,原选项错误,故不符合题意;
D、,原选项正确,故符合题意;
故选D.
【点睛】
本题主要考查去括号,熟练掌握去括号法则是解题的关键.
2、B
【分析】
根据单项式的定义,单项式的系数的定义,多项式的项的定义逐个判断即可.
【详解】
解:A.单项式的系数是,故本选项不符合题意;
B.a,π,52都是单项式,故本选项符合题意;
C.多项式3a3b+2a2﹣1的常数项是﹣1,故本选项不符合题意;
D.是多项式,不是单项式,故本选项不符合题意;
故选:B.
【点睛】
本题主要考查了单项式的定义,单项式的系数和多项式的定义,准确分析判断是解题的关键.
3、B
【分析】
根据幂的运算法则即可求解.
【详解】
A. =,故错误;
B. =,正确;
C. 不能计算,故错误;
D. =,故错误;
故选B.
【点睛】
此题主要考查幂的运算,解题的关键是熟知其运算法则.
4、C
【分析】
根据单项式系数和次数的定义,多项式的定义,同类项的定义逐一判断即可.
【详解】
解:A、单项式的系数是-1,说法正确,不符合题意;
B、单项式的次数是3,说法正确,不符合题意;
C、多项式是三次二项式,说法错误,符合题意;
D、单项式与ba是同类项,说法正确,不符合题意;
故选C.
【点睛】
本题主要考查了单项式的次数、系数的定义,多项式的定义,同类项的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数;同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项.
5、C
【分析】
先根据“完美数对”的定义,从而可得,再去括号,计算整式的加减,然后将整体代入即可得.
【详解】
解:由题意得:,即,
则,
,
,
,
,
故选:C.
【点睛】
本题考查了整式加减中的化简求值,掌握理解“完美数对”的定义是解题关键.
6、B
【分析】
根据合并同类项法则逐项计算即可.
【详解】
解:A. a2a3a,原选项不正确,不符合题意;
B. 2p(p)3p,原选项正确,符合题意;
C. mmm,原选项不正确,不符合题意;
D. 不是同类项,原选项不正确,不符合题意;
故选:B.
【点睛】
本题考查了合并同类项,解题关键是熟练运用合并同类项法则进行计算.
7、B
【分析】
根据去括号法则逐项计算,然后判断即可.
【详解】
解:A. x﹣(y﹣z)=x﹣y+z,原选项不正确,不符合题意;
B. ﹣(a﹣b)﹣(﹣c﹣d)=﹣a+b+c+d,原选项正确,符合题意;
C. x﹣2(z+y)=x﹣2y﹣2 z,原选项不正确,不符合题意;
D. ﹣(x﹣y+z)=﹣x+y﹣z,原选项不正确,不符合题意;
故选:B.
【点睛】
本题考查了去括号法则,解题关键是熟记去括号法则,准确进行去括号.
8、A
【分析】
先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.
【详解】
解:∵x2+mxy+25y2=x2+mxy+(5y)2,
∴mxy=±2x×5y,
解得:m=±10.
故选:A.
【点睛】
本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键.
9、A
【分析】
由题意根据正方形的面积公式可求该正方形的面积,再根据完全平方公式计算即可求解.
【详解】
解:该正方形的面积为(a+1)2=a2+2a+1.
故选:A.
【点睛】
本题主要考查列代数式,解题的关键是熟练掌握正方形的面积公式以及完全平方公式.
10、C
【分析】
根据同底数幂的乘除法法则以及积的乘方法则,幂的乘方法则,逐一判断选项,即可.
【详解】
解:A. ,故该选项错误,
B. ,故该选项错误,
C. ,故该选项正确,
D. ,故该选项错误,
故选C.
【点睛】
本题主要考查同底数幂的乘除法法则以及积的乘方法则,熟练掌握上述法则是解题的关键.
二、填空题
1、2013
【分析】
由题意得出这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数,据此解答即可.
【详解】
解:根据题意可知,这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数,
据此第2013个数的绝对值是2013,
∵2013÷4=503…1,
∴第2013个数为正数,
则第2013个数为2013,
故答案为:2013.
【点睛】
本题主要考查了数字的变化规律,根据已知数的规律得出这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数是解题的关键.
2、或
【分析】
根据题意分两种情况讨论:①当腰为2a,底为3a时,②当腰为3a,底为2a时,求出答案.
【详解】
解:①当腰为2a,底为3a时,
根据图形可得:
第一个图形的周长是2×2a+1×3a=4a+1×3a,
第二个图形的周长是2×2a+2×3a=4a+2×3a,
第三个图形的周长是2×2a+3×3a=4a+3×3a,
第四个图形的周长是2×2a+4×3a=4a+4×3a,
第五个图形的周长是2×2a+5×3a=4a+5×3a,
则第n个图形的周长为:4a+n·3a=.
②当腰为3a,底为2a时,
根据图形可得:
第一个图形的周长是2×3a+1×2a=6a+1×2a,
第二个图形的周长是2×3a+2×2a=6a+2×2a,
第三个图形的周长是2×3a+3×2a=6a+3×2a,
第四个图形的周长是2×3a+4×2a=6a+4×2a,
第五个图形的周长是2×3a+5×2a=6a+5×2a,
则第n个图形的周长为:6a+n·2a=.
故答案为:或.
【点睛】
本题考查了图形的变化类问题,通过观察分析得出规律,注意分两种情况讨论解答.
3、b+a
【分析】
根据数a,b在数轴上的位置得出,然后化简绝对值即可.
【详解】
解:根据数a,b在数轴上的位置可得:
,
∴,,
∴|b﹣a|+|b|=,
故答案为:.
【点睛】
本题考查了在数轴上表示有理数,化简绝对值,根据点在数轴上的位置得出相应式子的正负是解本题的关键.
4、5
【分析】
直接利用完全平方公式计算得出答案.
【详解】
解:∵a+b=3,ab=1,
∴(a+b)2=9,
则a2+2ab+b2=9,
∴a2+b2=9-2=7;
(a-b)2=a2-2ab+b2=7-2=5.
故答案为:5.
【点睛】
此题主要考查了完全平方公式,正确将已知变形是解题关键.
5、22
【分析】
根据单项式系数的定义直接可得出答案
【详解】
解:单项式的系数是 22 .
故答案为22.
【点睛】
本题考查的知识点是单项式的系数,单项式中的数字因数叫做这个单项式的系数,要注意数字因数前面的符号要带着.
三、解答题
1、(1);(2);(3)
【解析】
【分析】
(1)根据路程等于速度乘以时间即可表示出,根据线段的差即可求得;
(2)根据即可求得求阴影部分的面积
(3)将t=5代入(2)的代数式中即可求解
【详解】
解:(1) AD=8,设运动时间为t秒,动点P以每秒1个单位长度的速度从点A出发沿AD向终点D运动
,
故答案为:
(2)四边形是长方形
点M是边AB的中点,
(3)当时,
【点睛】
本题考查了列代数式,代数式求值,表示出PD是解题的关键.
2、(1);(2)0
【解析】
【分析】
(1)把,代入化简即可;
(2)把,代入(1)中化简出的式子中计算即可.
【详解】
(1)
;
(2)
,
,
.
【点睛】
本题考查整式的化简求值,掌握整式的运算法则与运算顺序是解题的关键.
3、(1)-9;(2)-1
【解析】
【分析】
(1)利用多项式的定义得出m,n的值,进而代入求出即可;
(2)把代入得,再将代入求出即可.
【详解】
①
,
由题意可得,,
所以,,
将去括号,得,
合并同类项得,
将,代入,得,
所以代数式的值为.
②解:把代入得,
当时,
.
【点睛】
此题主要考查了整式的加减,多项式的定义,得出关于x系数之间关系是解题关键.
4、3
【解析】
【分析】
先去括号,然后合并同类项化简,最后将已知式子的值代入求解即可.
【详解】
解:,
,
,
,
当,时,
原式,
.
【点睛】
题目主要考查整式的化简求值,熟练掌握整式的化简方法是解题关键.
5、(1);(2);.
【解析】
【分析】
(1)直接根据合并同类项法则进行计算即可;
(2)根据整式的加减运算法则将原式进行化简,代入计算即可.
【详解】
解:(1)原式=
=
=;
(2)原式=
=
=
=,
当m=﹣1,n=﹣2,
原式=.
【点睛】
本题考查了整式的加减以及化简求值,熟练掌握整式的加减运算法则是解本题的关键.
相关试卷
这是一份初中北京课改版第六章 整式的运算综合与测试测试题,共15页。试卷主要包含了下列计算正确的是,下列运算正确的是,若,,求的值是等内容,欢迎下载使用。
这是一份2020-2021学年第六章 整式的运算综合与测试测试题,共16页。试卷主要包含了下列运算正确的是,若,,,则的值为,观察下列各式等内容,欢迎下载使用。
这是一份数学七年级下册第六章 整式的运算综合与测试一课一练,共18页。试卷主要包含了下列计算正确的是,下列结论中,正确的是,下列说法中等内容,欢迎下载使用。