2021学年第六章 整式的运算综合与测试课时训练
展开这是一份2021学年第六章 整式的运算综合与测试课时训练,共18页。试卷主要包含了下列结论中,正确的是,已知整数,下列计算正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各式中,计算结果为的是( )
A. B.
C. D.
2、下列运算正确的是( )
A.(a2)3=a6 B.a2•a3=a6
C.a7÷a=a7 D.(﹣2a2)3=8a6
3、如果代数式的值为7,那么代数式的值为( )
A. B.2 C. D.0
4、下列结论中,正确的是( )
A.单项式的系数是3,次数是2
B.单项式m的次数是1,没有系数
C.多项式x2+y2﹣1的常数项是1
D.多项式x2+2x+18是二次三项式
5、已知整数、满足下列条件:=,=-,以此类推,则的值为( )
A.-2018 B.-1010 C.-1009 D.-1008
6、如图所示的运算程序中,若开始输入的x值为96,我们发现第一次输出的结果为48;第二次输出的结果为24,…,则第2019次输出的结果为( )
A.0 B.1 C.2 D.﹣1
7、若x2+mxy+25y2是一个完全平方式,那么m的值是( )
A.±10 B.-5 C.5 D.±5
8、已知,m,n均为正整数,则的值为( ).
A. B. C. D.
9、下列计算正确的是( )
A. B.
C. D.
10、下列计算正确的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…,按此规律,第10个图中共有点的个数是______个.
2、若x2+2(m﹣3)x+16是完全平方式,则m的值等于______.
3、若关于、的多项式中不含项,则______.
4、观察下列单项式:2x,5x2,10x3,17x4,26x5,…,按此规律,第10个单项式是_____.
5、若一个多项式减去等于x-1,则这个多项式是______.
三、解答题(5小题,每小题10分,共计50分)
1、计算:.
2、计算:
(1);
(2);
(3);
(4).
3、先化简,再求值:
;其中,.
4、如图1是一个长为、宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.
(1)观察图2,请你直接写出下列三个代数式之间的等量关系为_______;
(2)运用你所得到的公式解答下列问题:
①若为实数,且,,求的值.
②如图3,,分别表示边长为的正方形的面积,且三点在一条直线上,若,求图中阴影部分的面积.
5、(1)如图(1)所示的大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是______(写成平方差的形式)
(2)若将图(1)中的阴影部分剪下来,拼成如图(2)所示的长方形,则阴影部分的面积是_________(写成多项式相乘的形式)
(3)比较两图中的阴影部分的面积,可以得到公式为____________
(4)应用公式计算:.
---------参考答案-----------
一、单选题
1、B
【分析】
根据幂的运算法则即可求解.
【详解】
A. =,故错误;
B. =,正确;
C. 不能计算,故错误;
D. =,故错误;
故选B.
【点睛】
此题主要考查幂的运算,解题的关键是熟知其运算法则.
2、A
【分析】
根据同底数幂的乘除运算、幂的乘方、积的乘方可直接进行排除选项.
【详解】
解:A、,原选项正确,故符合题意;
B、,原选项错误,故不符合题意;
C、,原选项错误,故不符合题意;
D、,原选项错误,故不符合题意;
故选A.
【点睛】
本题主要考查同底数幂的乘除运算、幂的乘方、积的乘方,熟练掌握同底数幂的乘除运算、幂的乘方、积的乘方是解题的关键.
3、D
【分析】
根据题意可得,变形为,将其代入代数式求解即可.
【详解】
解:∵,
∴,
∴,
∴,
故选:D.
【点睛】
题目主要考查求代数式的值,理解题意,将已知式子变形是解题关键.
4、D
【详解】
根据单项式和多项式的相关定义解答即可得出答案.
【分析】
解:A、单项式的系数是,次数是3,原说法错误,故此选项不符合题意;
B、单项式m的次数是1,系数也是1,原说法错误,故此选项不符合题意;
C、多项式x2+y2﹣1的常数项是﹣1,原说法错误,故此选项不符合题意;
D、多项式x2+2x+18是二次三项式,原说法正确,故此选项符合题意.
故选D.
【点睛】
本题主要考查了单项式的定义,单项式的次数、系数的定义,多项式的定义及其次数的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数.
5、B
【分析】
先根据有理数的加法和绝对值运算求出的值,再归纳类推出一般规律,由此即可得.
【详解】
解:由题意得:,
,
,
,
,
,
归纳类推得:当为奇数时,;当为偶数时,,
则,
故选:B.
【点睛】
本题考查了数字类规律探索,正确归纳类推出一般规律是解题关键.
6、B
【分析】
按照程序进行计算,发现规律,利用规律求解即可.
【详解】
解:当输入x=96时,第一次输出96×=48;
当输入x=48时,第二次输出48×=24;
当输入x=24时,第三次输出24×=12;
当输入x=12时,第四次输出12×=6;
当输入x=6时,第五次输出6×=3;
当输入x=3时,第六次输出3×3﹣1=8;
当输入x=8时,第七次输出8×=4;
当输入x=4时,第八次输出4×=2;
当输入x=2时,第九次输出2×=1;
当输入x=1时,第十次输出3×1﹣1=2;
…
∴从第8次开始,以2,1的形式循环出现,
∵(2019﹣7)÷2=1006,
∴第2019次输出的结果为:1.
故选:B.
【点睛】
本题考查了有理数的运算,解题关键是根据运算结果发现规律,利用规律解题.
7、A
【分析】
先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.
【详解】
解:∵x2+mxy+25y2=x2+mxy+(5y)2,
∴mxy=±2x×5y,
解得:m=±10.
故选:A.
【点睛】
本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键.
8、C
【分析】
根据幂的乘方和同底数幂的乘法运算法则进行计算即可得出结果.
【详解】
解:∵
∴
故选C
【点睛】
本题主要考查了幂的乘方和同底数幂的乘法,熟练掌握相关运算法则是解答本题的关键.
9、C
【分析】
由合并同类项可判断A,由积的乘方运算可判断B,C,由同底数幂的除法运算可判断D,从而可得答案.
【详解】
解:不是同类项,不能合并,故A不符合题意;
故B不符合题意;
,运算正确,故C符合题意;
故D不符合题意;
故选C
【点睛】
本题考查的是合并同类项,积的乘方运算,同底数幂的除法运算,掌握以上基础运算是解本题的关键.
10、D
【分析】
由题意直接根据整式的加减运算法则进行逐项计算判断即可得出答案.
【详解】
解:A. ,选项错误;
B. ,选项错误;
C. ,选项错误;
D. ,选项正确.
故选:D.
【点睛】
本题考查整式的加减运算和去括号原则,熟练掌握去括号原则以及合并同类项原则是解题的关键.
二、填空题
1、166
【分析】
先根据前3个图形的点的个数找到规律,再根据规律求解即可;
【详解】
解:第1个图中共有4个点,4=1+3×1;
第2个图中共有10个点,10=1+3×1+3×2;
第3个图中共有19个点,19=1+3×1+3×2+3×3;
…,
按此规律,第10个图中共有点的个数是1+3×1+3×2+3×3+…+3×10=166;
故答案为:166;
【点睛】
本题考查了规律探求,由前几个图形中点的个数找到规律是解题的关键.
2、7
【分析】
根据已知完全平方式得出2(m-3)x=±2•x•4,求出即可.
【详解】
解:∵x2+2(m-3)x+16是完全平方式,
∴2(m-3)x=±2•x•4,
解得:m=7或-1,
故答案为:7或-1.
【点睛】
本题考查了完全平方式,能熟记完全平方式的内容是解此题的关键,注意:完全平方式有两个:a2+2ab+b2和a2-2ab+b2.
3、3
【分析】
先合并关于xy的同类项,再令项的系数等于零求解.
【详解】
解:
=,
∵多项式中不含项,
∴-2k+6=0,
∴k=3.
故答案为:3.
【点睛】
本题考查了整式的加减---无关型问题,解答本题的关键是理解题目中代数式的取值与哪一项无关的意思,与哪一项无关,就是合并同类项后令其系数等于0,由此建立方程,解方程即可求得待定系数的值.
4、101x10
【分析】
分析题中每个单项式,系数为(n2+1),含未知数的部分为:xn,则第n项应为:(n2+1)xn.
【详解】
解:所给单项式分别是2x,5x2,10x3,17x4,26x5,…,
则第n个单项式为:(n2+1)xn.
故第10个单项式为:(102+1)x10=101x10.
故答案为:101x10.
【点睛】
本题考查了单项式,解题的关键是发现所给单项式的系数和次数规律,从而解答问题.
5、
【分析】
由一个多项式减去等于x-1,求这个多项式,可列式为再合并同类项即可.
【详解】
解:一个多项式减去等于x-1,
所以这个多项式为:
故答案为:
【点睛】
本题考查的是减法的意义,整式的加减运算,正确的列出运算式进行计算是解本题的关键.
三、解答题
1、
【解析】
【分析】
根据整式的乘法运算法则、合并同类项法则进行计算即可.
【详解】
解:
=
=.
【点睛】
本题考查整式的乘除、合并同类项,熟练掌握运算法则是解答的关键.
2、(1)-11;(2)5;(3);(4)x2.
【解析】
【分析】
(1)由题意先将减法统一成加法,然后再计算;
(2)根据题意先将除法统一成乘法,然后再计算;
(3)由题意先算乘方,然后算乘除,最后算加减;
(4)根据题意先去括号,然后合并同类项进行化简即可.
【详解】
解:(1)
=5+3+(-7)+(-12)
=8+(-7)+(-12)
=1+(-12)
=-(12-1)
=-11;
(2)
=
=5;
(3)
=
=
=;
(4)
=
=x2.
【点睛】
本题主要考查有理数的混合运算,整式的加减运算,注意明确有理数混合运算顺序(先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算),合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“-”号,去掉“-”号和括号,括号里的各项都变号)是解题的关键.
3、x2y+5xy2,42.
【解析】
【分析】
先运用去括号法则去括号,然后合并同类项,化简整式,最后代入求值即可.
【详解】
解:原式=4x2y-xy2-3x2y+6xy2=x2y+5xy2.
当x=3,y=-2时,
原式=32(-2)+53(-2)2=-18+60=42.
【点睛】
本题考查了整式加减的化简求值.去括号时应注意:①不要漏乘;②括号前面是“-”,去括号后括号里面的各项都要变号.
4、(1)(a+b)2=4ab+(a﹣b)2;(2)①m﹣n=4或m﹣n=﹣4;②阴影部分面积为8.
【解析】
【分析】
(1)结合图形可得:大正方形面积=四个矩形的面积+中间小正方形的面积,表示出各个图形的面积,三者关系式即可得;
(2)①根据(1)中结论可得:,然后将已知式子的值代入化简即可;
②根据题意可得:,且,将其代入完全平方公式中化简可得:,结合图形,求阴影部分面积即可.
【详解】
解:
(1)由图可知,
大正方形面积=四个矩形的面积+中间小正方形的面积,
即,
故答案为:;
(2)①∵,,
∴,
∴,
∴或;
②∵,分别表示边长为p,q的正方形的面积,
∴,,
∵,
∴,
∵,
∴
∴,,
∴,
由图可知,阴影部分面积为:,
∴阴影部分面积为8.
【点睛】
题目主要考查完全平方公式在求几何图形面积中的应用,理解题意,结合图形,熟练运用两个完全平方公式的变形是解题关键.
5、(1)a2−b2;(2)(a+b)(a−b);(3)(a−b)(a+b)=a2−b2;(4).
【解析】
【分析】
(1)根据面积的和差,可得答案;
(2)根据长方形的面积公式,可得答案;
(3)根据图形割补法,面积不变,可得答案;
(4)根据平方差公式计算即可.
【详解】
解:(1)如图(1)所示,阴影部分的面积是a2−b2,
故答案为:a2−b2;
(2)根据题意知该长方形的长为a+b、宽为a−b,
则其面积为(a+b)(a−b),
故答案为:(a+b)(a−b);
(3)由阴影部分面积相等知(a−b)(a+b)=a2−b2,
故答案为:(a−b)(a+b)=a2−b2;
(4)
=
=
=
=.
【点睛】
本题考查的是平方差公式的推导和运用,灵活运用平方差公式、掌握数形结合思想是解题的关键.
相关试卷
这是一份北京课改版七年级下册第六章 整式的运算综合与测试同步训练题,共19页。试卷主要包含了下列计算正确的是,下列运算正确的是,下列各式运算的结果可以表示为等内容,欢迎下载使用。
这是一份数学七年级下册第六章 整式的运算综合与测试复习练习题,共18页。试卷主要包含了下列式子,下列说法中,下列运算正确的是等内容,欢迎下载使用。
这是一份北京课改版第六章 整式的运算综合与测试练习题,共17页。试卷主要包含了化简x-2,计算的结果是等内容,欢迎下载使用。