北京课改版七年级下册第六章 整式的运算综合与测试精练
展开这是一份北京课改版七年级下册第六章 整式的运算综合与测试精练,共16页。试卷主要包含了下面说法正确的是,下列计算正确的是,下列说法正确的是,下列运算正确的是,下列结论中,正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、对代数式-(a-b)进行去括号运算,结果正确的是( )
A.a-b B.-a-b C.a+b D.–a+b
2、一个两位数个位上的数是1,十位上的数是x,如果把1与x对调,新两位数与原两位数的和不可能是( )
A.66 B.99 C.110 D.121
3、下列运算中正确的是( )
A.b2•b3=b6 B.(2x+y)2=4x2+y2
C.(﹣3x2y)3=﹣27x6y3 D.x+x=x2
4、下面说法正确的是( )
A.倒数等于它本身的数是1
B.是最大的负整数
C.单项式的系数是,次数是2
D.与是同类项
5、下列计算正确的是( )
A. B. C. D.
6、下列说法正确的是( )
A.﹣的系数是﹣5
B.1﹣2ab+4a是二次三项式
C.不属于整式
D.“a,b的平方差”可以表示成(a﹣b)2
7、下列运算正确的是( )
A. B. C. D.
8、如果代数式的值为7,那么代数式的值为( )
A. B.2 C. D.0
9、下列结论中,正确的是( )
A.单项式的系数是3,次数是2
B.单项式m的次数是1,没有系数
C.多项式x2+y2﹣1的常数项是1
D.多项式x2+2x+18是二次三项式
10、下列计算正确的有( )
① ② ③ ④
A.3个 B.2个 C.1个 D.0个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在我国南宋数学家杨辉所著的《详解九章算术》一书中,介绍了展开式的系数规律,称为“杨辉三角”.如第5行的5个数是1,4,10,4,1,恰好对应着展开式中的各项系数.利用上述规律计算:______.
2、单项式的系数是_______.
3、多项式的次数是_____.
4、已知,两数在数轴上对应的点如图所示,化简的结果是___.
5、减去等于的多项式是______.
三、解答题(5小题,每小题10分,共计50分)
1、化简求值 ,其中,
2、先化简,再求值:,其中x=2,.
3、先化简,再求值:(5a2﹣3b)﹣3(a2﹣2b),其中a=﹣,b=.
4、如图①是将一个边长为的大正方形的一角截去一个边长为的小正方形(阴影部分),然后将图①剩余部分拼接成如图②的一个大长方形(阴影部分).
(1)请用两种不同的方法列式表示图②中大长方形的面积:
方法一: ;
方法二: ;
(2)根据探究的结果,直接写出这三个式子之间的等量关系;
(3)利用你发现的结论,求的值.
5、先化简,再求值2a2﹣[(ab﹣4a2)+8ab]﹣ab;其中a=1,b=﹣.
---------参考答案-----------
一、单选题
1、D
【分析】
根据去括号法则进行计算即可.
【详解】
解:代数式-(a-b)进行去括号运算,结果是–a+b.
故选:D
【点睛】
本题考查了去括号法则,解题关键是明确括号前面是负号时,括号内各项都变号.
2、D
【分析】
先分别用代数式表示出原两位数和新两位数,然后根据整式的加减计算法则求出新两位数与原两位数的和,由此求解即可.
【详解】
解:∵一个两位数个位上的数是1,十位上的数是x,
∴这个两位数为,
∴把1与x对调后的新两位数为,
∴,
∴新两位数与原两位数的和一定是11的倍数,
∵原两位数十位上的数字是x,
∴(的正整数)
∴,
∴新两位数与原两位数的和不可能是121,
故选D.
【点睛】
本题主要考查了整式加减的应用,解题的关键在于能够熟练掌握整式的加减计算法则.
3、C
【分析】
根据同底数幂的乘法,完全平方公式,幂的乘方与积的乘方以及合并同类项进行解答.
【详解】
解:A、b2•b3=b5,不符合题意;
B、(2x+y)2=4x2+4xy+y2,不符合题意;
C、(﹣3x2y)3=﹣27x6y3,符合题意;
D、x+x=2x,不符合题意.
故选:C.
【点睛】
本题主要考查了同底数幂的乘法,完全平方公式,幂的乘方与积的乘方以及合并同类项等知识点.
4、B
【分析】
选项A根据倒数的定义判断即可,倒数:乘积是1的两数互为倒数;选项B根据整数与负数的定义判断即可,整数包括正整数,零,负整数;选项C根据单项式的定义判断即可,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;选项D根据同类项的定义判断即可,定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.
【详解】
解:.倒数等于它本身的数是,故本选项不合题意;
.是最大的负整数,正确,故本选项符合题意;
.单项式的系数是,次数是3,故本选项不合题意;
.与所含字母相同,但相同字母的指数不相同,不是同类项,故本选项不合题意;
故选:.
【点睛】
本题考查了单项式,倒数,有理数以及同类项,掌握相关定义是解答本题的关键.
5、D
【分析】
由题意直接根据整式的加减运算法则进行逐项计算判断即可得出答案.
【详解】
解:A. ,选项错误;
B. ,选项错误;
C. ,选项错误;
D. ,选项正确.
故选:D.
【点睛】
本题考查整式的加减运算和去括号原则,熟练掌握去括号原则以及合并同类项原则是解题的关键.
6、B
【分析】
根据代数式,整式,单项式与多项式的相关概念解答即可.
【详解】
解:A、﹣的系数是﹣,原说法错误,故此选项不符合题意;
B、1﹣2ab+4a是二次三项式,原说法正确,故此选项符合题意;
C、属于整式,原说法错误,故此选项不符合题意;
D、“a,b的平方差”可以表示成a2﹣b2,原说法错误,故此选项不符合题意;
故选:B.
【点睛】
此题考查了代数式,整式,单项式与多项式,解题的关键是掌握单项式和多项式的相关定义,多项式的次数是多项式中次数最高项的次数,多项式的项包括符号.
7、D
【分析】
根据整式的运算法则逐项检验即可.
【详解】
解:A、b2与b3不是同类项,不能合并,故该选项不符合题意;
B、,原计算错误,故该选项不符合题意;
C、,原计算错误,故该选项不符合题意;
D、,正确,故该选项符合题意;
故选:D.
【点睛】
本题考查了合并同类项,同底数幂的乘法除法,积的乘方等整式的相关运算法则,能够熟记基本的运算法则并灵活运用,正确计算是解决本题的关键.
8、D
【分析】
根据题意可得,变形为,将其代入代数式求解即可.
【详解】
解:∵,
∴,
∴,
∴,
故选:D.
【点睛】
题目主要考查求代数式的值,理解题意,将已知式子变形是解题关键.
9、D
【详解】
根据单项式和多项式的相关定义解答即可得出答案.
【分析】
解:A、单项式的系数是,次数是3,原说法错误,故此选项不符合题意;
B、单项式m的次数是1,系数也是1,原说法错误,故此选项不符合题意;
C、多项式x2+y2﹣1的常数项是﹣1,原说法错误,故此选项不符合题意;
D、多项式x2+2x+18是二次三项式,原说法正确,故此选项符合题意.
故选D.
【点睛】
本题主要考查了单项式的定义,单项式的次数、系数的定义,多项式的定义及其次数的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数.
10、B
【分析】
括号前为正号,去括号不变号;若为符号,去括号变号;提取公因式,合并同类项.
【详解】
解:,所以正确,符合题意;
,所以错误,不符合题意;
,所以错误,不符合题意;
,所以正确,符合题意.
故选B.
【点睛】
本题考查了整式加减运算中的去括号与合并同类项.解题的关键找出同类项,正确的去括号.
二、填空题
1、
【分析】
根据杨辉三角得到第5行的5项系数是1,4,10,4,1,将变形为,即可得到,计算即可求解.
【详解】
解:由题意得
=
.
故答案为:
【点睛】
本题考查了根据杨辉三角系数的特点进行计算,理解杨辉三角中各项系数的特点,并将原式进行正确变形是解题关键.
2、
【分析】
单项式的系数指的是单项式中的数字因式,观察所给单项式,进而得出系数.
【详解】
解:中为数字因式
即为单项式的系数
故答案为:.
【点睛】
本题考察了单项式的系数.解题的关键在于区分单项式中的数字因式与字母因式.
3、5
【分析】
根据多项式次数的概念来解答.
【详解】
解:代数式次数是五次,
故答案为:5.
【点睛】
本题考查了多项式的次数,掌握多项式的次数是多项式中次数最高的项的次数是解题的关键.
4、
【分析】
根据数轴可得b<0<a,根据有理数的加法法则可得b−a<0,再计算绝对值后化简即可求解.
【详解】
解:由数轴可得,
则,
则
.
故答案为:.
【点睛】
本题考查了数轴,绝对值,解答本题的关键是根据a、b在数轴上的位置进行绝对值的化简.
5、
【分析】
根据差+减数=被减数,计算即可得到结果.
【详解】
解:根据题意得:=,
故答案为:.
【点睛】
此题考查了整式的加减,熟练掌握运算法则是解本题的关键.
三、解答题
1、+y,-17
【解析】
【分析】
根据整式加减的运算法则“一般地,几个整式相加减,如果有括号就先去括号,然后合并同类项”进行解答即可得.
【详解】
解:原式=
=,
当,时,.
【点睛】
本题考查了整式的化简求值,解题的关键是掌握整式加减的运算法则.
2、3x﹣2y,.
【解析】
【分析】
原式去括号,然后根据整式的加减计算法则合并得到最简结果,把x与y的值代入计算即可求出值.
【详解】
解:原式=2x﹣4y﹣x+2y+2x
=3x﹣2y,
当x=2,时,
原式=.
【点睛】
本题主要考查了整式的化简求值,去括号,熟知相关计算法则是解题的关键.
3、2a2+3b,
【解析】
【分析】
先去括号合并同类项,然后把a=﹣,b=代入计算即可.
【详解】
解:(5a2﹣3b)﹣3(a2﹣2b)
=5a2﹣3b﹣3a2+6b
= 2a2+3b,
当a=﹣,b=时,
原式=
=
=.
【点睛】
本题考查了整式的加减-化简求值,一般先把所给整式去括号合并同类项,再把所给字母的值或代数式的值代入计算.
4、(1);(2);(3)708000
【解析】
【分析】
(1)方法1:用a为边长的正方形面积减去小正方形面积即可;方法2:直接读取图②中大长方形的长与宽,再求面积;
(2)根据a2-b2和(a+b)(a-b)表示同一个图形的面积进行判断;根据图形可以写出等量关系;
(3)根据a2-b2=(a+b)(a-b),进行计算即可得到答案.
【详解】
解:(1)由图可知,
方法1:图②中大长方形的面积为:a2-b2,
方法2:图②中大长方形的面积为:(a+b)(a-b),
故答案为:a2-b2,(a+b)(a-b);
(2)由图可得,
这三个式子之间的等量关系是:a2-b2=(a+b)(a-b),
故答案为:a2-b2=(a+b)(a-b);
(3)解:原式=
=
=708000
【点睛】
本题主要考查了平方差公式的几何背景,解决问题的关键是运用两种不同的方式表达同一个图形的面积,进而得出一个等式,这是数形结合思想的运用.
5、,7.
【解析】
【分析】
先去括号,再计算整式的加减,然后将的值代入计算即可得.
【详解】
解:原式,
,
,
将代入得:原式.
【点睛】
本题考查了整式加减中的化简求值,熟练掌握整式加减的运算法则是解题关键.
相关试卷
这是一份数学七年级下册第六章 整式的运算综合与测试课时训练,共16页。试卷主要包含了有理数a,下列运算正确的是,下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后测评,共18页。试卷主要包含了下列计算正确的是,把多项式按的降幂排列,正确的是,下列数字的排列,如果a﹣4b=0,那么多项式2,下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后测评,共18页。试卷主要包含了用“※”定义一种新运算,下列计算正确的是,把式子去括号后正确的是等内容,欢迎下载使用。