初中数学北京课改版七年级下册第六章 整式的运算综合与测试综合训练题
展开这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试综合训练题,共16页。试卷主要包含了下列说法正确的是,已知下列一组数,把式子去括号后正确的是,下列运算正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列运算正确的是( )
A. B. C. D.
2、下列计算中,正确的是( )
A. B.
C. D.
3、下列说法正确的是( )
A.单项式的次数是3,系数是
B.多项式的各项分别是,,5
C.是一元一次方程
D.单项式与能合并
4、下列说法正确的是( )
A.﹣的系数是﹣5
B.1﹣2ab+4a是二次三项式
C.不属于整式
D.“a,b的平方差”可以表示成(a﹣b)2
5、已知下列一组数:1,,,,,…;用代数式表示第n个数,则第n个数是( )
A. B. C. D.
6、把式子去括号后正确的是( )
A. B. C. D.
7、下列运算正确的是( )
A. B.
C. D.
8、下列运算正确的是( )
A.(a2)3=a6 B.a2•a3=a6
C.a7÷a=a7 D.(﹣2a2)3=8a6
9、如果代数式的值为7,那么代数式的值为( )
A. B.2 C. D.0
10、下列计算正确的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若式子x2+16x+k是一个完全平方式,则k=______.
2、观察下列方程:
解是;
的解是;
的解是;
根据观察得到的规律,写出解是的方程是______.
写出解是的方程是______.
3、已知,,则多项式的值为______.
4、加上等于的多项式是______.
5、________________.
三、解答题(5小题,每小题10分,共计50分)
1、先化简,再求值:(2x+3y)﹣4y﹣2(5x﹣3y),其中x=﹣5,y=﹣9
2、先化简,再求值:(x﹣2y)2﹣(x﹣2y)(2x+y)+(x﹣y)(x+y),其中x=5y.
3、先化简,再求值:,其中.
4、化简求值:
(1)化简:2(x2y﹣xy2)﹣3(x2y+xy2)+5xy2;
(2)求值:当(x+2)2+|y+1|=0时,求(1)中式子的值.
5、计算题:
①(﹣18)﹣(+3)﹣(﹣6)+(﹣12);
②;
③;
④﹣32﹣23﹣[(﹣9)3+93]+(﹣1)2017;
⑤先化简,再求值(2x2﹣2y2)﹣3(x2y+x2)+3(x2y+y2),其中x=﹣1,y=2.
---------参考答案-----------
一、单选题
1、C
【分析】
结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.
【详解】
A、a2和a不是同类项,不能合并,故本选项错误;
B、ax和ay不是同类项,不能合并,故本选项错误;
C、,计算正确,故本选项正确;
D、(,故本选项错误.
故选:C.
【点睛】
本题考查同底数幂的乘法、幂的乘方以及合并同类项,掌握相关的运算法则是解题的关键.
2、D
【分析】
根据完全平方公式可判断A,根据同底数幂的乘法同底数幂相乘底数不变指数相加可判断B,根据同底数幂除法运算法则同底数幂相乘底数不变指数相减可判断C,根据积的乘方每个因式分别乘方与幂的乘方法则底数不变指数相乘可判断D.
【详解】
A. ,故选项A不正确;
B. ,故选项B不正确;
C. ,故选项C不正确;
D. ,故选项D正确.
故选:D.
【点睛】
本题考查整式中幂指数运算与乘法公式,掌握整式中幂指数运算与乘法公式是解题关键.
3、C
【分析】
根据单项式的次数和系数的定义、多项式的项的定义、一元一次方程的定义和同类项的定义逐项判断即可.
【详解】
A. 单项式的次数是4,系数是,故该选项错误,不符合题意;
B. 多项式的各项分别是、、-5,故该选项错误,不符合题意;
C. 是一元一次方程,正确,符合题意;
D. 单项式和不是同类项,不能合并,故该选项错误,不符合题意.
故选:C.
【点睛】
本题考查单项式的次数和系数、多项式的项、一元一次方程和同类项.正确掌握各定义是解答本题的关键.
4、B
【分析】
根据代数式,整式,单项式与多项式的相关概念解答即可.
【详解】
解:A、﹣的系数是﹣,原说法错误,故此选项不符合题意;
B、1﹣2ab+4a是二次三项式,原说法正确,故此选项符合题意;
C、属于整式,原说法错误,故此选项不符合题意;
D、“a,b的平方差”可以表示成a2﹣b2,原说法错误,故此选项不符合题意;
故选:B.
【点睛】
此题考查了代数式,整式,单项式与多项式,解题的关键是掌握单项式和多项式的相关定义,多项式的次数是多项式中次数最高项的次数,多项式的项包括符号.
5、B
【分析】
根据题意仔细观察给出的数字,找出其中存在的规律从而解题即可.
【详解】
解:∵1=;
;
;
∴第n个数是:.
故选:B.
【点睛】
本题考查数字找规律,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.
6、C
【分析】
由去括号法则进行化简,即可得到答案.
【详解】
解:,
故选:C
【点睛】
本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.顺序为先大后小.
7、B
【分析】
根据幂的运算和乘法公式逐项判断即可.
【详解】
解:A. ,原选项不正确,不符合题意;
B. ,原选项正确,符合题意;
C. ,原选项不正确,不符合题意;
D. ,原选项不正确,不符合题意;
故选:B.
【点睛】
本题考查了幂的运算和乘法公式,解题关键是熟记幂的运算法则和乘法公式.
8、A
【分析】
根据同底数幂的乘除运算、幂的乘方、积的乘方可直接进行排除选项.
【详解】
解:A、,原选项正确,故符合题意;
B、,原选项错误,故不符合题意;
C、,原选项错误,故不符合题意;
D、,原选项错误,故不符合题意;
故选A.
【点睛】
本题主要考查同底数幂的乘除运算、幂的乘方、积的乘方,熟练掌握同底数幂的乘除运算、幂的乘方、积的乘方是解题的关键.
9、D
【分析】
根据题意可得,变形为,将其代入代数式求解即可.
【详解】
解:∵,
∴,
∴,
∴,
故选:D.
【点睛】
题目主要考查求代数式的值,理解题意,将已知式子变形是解题关键.
10、C
【分析】
根据幂的运算及整式的乘法运算即可作出判断.
【详解】
A、,故计算不正确;
B、,故计算不正确;
C、,故计算正确;
D、,故计算不正确.
故选:C
【点睛】
本题考查了同底数幂的除法、积的乘方、同类项合并、单项式乘多项式等知识,掌握这些知识是关键.
二、填空题
1、64
【分析】
根据完全平方公式解答即可.
【详解】
解:∵(x+8)2=x2+16x+64=x2+16x+k,
∴k=64.
故填64.
【点睛】
本题主要考查了完全平方公式,掌握完全平方公式的结构特点成为解答本题的关键.
2、
【分析】
观察所给的三个方程及方程的解,把方程变形,方程的解与第一个式子的分母有关系,得出规律 的解是,据此规律求解即可得.
【详解】
解:的解是;方程变形为,方程的解为;
的解是;方程变形为,方程的解为;
的解是;方程变形为,方程的解为;
……
由规律可知: 的解是,
当时,,
,
即,
当时,,
,
即,
故答案为:①;②.
【点睛】
本题考查方程的解与方程规律问题,理解题意,找出规律是解题关键.
3、9
【分析】
多项式可变形为,然后整体代入即可求解.
【详解】
解:
,
∵,,
∴原式
,
故答案为:9.
【点睛】
本题主要考查了代数式求值,解题关键是掌握整体思想,将代数式变形为已知式相关的形式求解.
4、
【分析】
根据整式的加减运算法则计算即可.
【详解】
解:.
故答案为:.
【点睛】
本题考查整式的加减运算,熟练掌握该知识点是解题关键.
5、
【分析】
利用平方差公式直接求解即可求得答案.
【详解】
解:(a+2)(a-2)=.
故答案为:
【点睛】
本题考查了平方差公式.注意运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.
三、解答题
1、,-5
【解析】
【分析】
先去括号,然后根据整式的加减计算法则化简,最后代值计算即可.
【详解】
解:
,
当x=﹣5,y=﹣9时,原式
【点睛】
本题主要考查了去括号,整式的化简求值,解题的关键在于能够熟练掌握相关计算法则.
2、,0
【解析】
【分析】
先计算完全平方公式、平方差公式、整式的乘法,再计算整式的加减法,然后将代入计算即可得.
【详解】
解:原式,
,
,
将代入得:原式.
【点睛】
本题考查了整式的化简求值,熟练掌握乘法公式和运算法则是解题关键.
3、,2
【解析】
【分析】
先去括号,合并同类项,再将未知数的值代入计算.
【详解】
解:原式=
=,
当时,原式=2.
【点睛】
此题考查了整式的化简求值,掌握整式的加减法计算法则是解题的关键.
4、(1)﹣x2y;(2)4
【解析】
【分析】
(1)原式去括号合并同类项即可得到结果;
(2)利用非负数的性质求出x与y的值,代入原式计算即可求出值.
【详解】
解:(1)2(x2y﹣xy2)﹣3(x2y+xy2)+5xy2
=2x2y﹣2xy2﹣3x2y﹣3xy2+5xy2
=﹣x2y;
(2)∵(x+2)2+|y+1|=0,
∴x+2=0,y+1=0,
解得:x=﹣2,y=﹣1,
则﹣x2y=﹣(﹣2)2×(﹣1)=4.
【点睛】
此题考查了整式的加减-化简求值,熟练掌握去括号与合并同类项法则是解本题的关键.
5、①﹣27;②﹣24;③2;④﹣18;⑤﹣x2+y2,3
【解析】
【分析】
①将减法统一成加法,然后根据有理数加法交换律和加法结合律进行简便计算;
②将除法统一成乘法,然后根据有理数乘法交换律和乘法结合律进行简便计算;
③使用乘法分配律进行简便计算;
④先算乘方,然后先算小括号里面的,再算括号外面的;
⑤原式去括号,合并同类项进行化简,然后代入求值.
【详解】
解:①原式=﹣18+(﹣3)+6+(﹣12)
=[(﹣18)+(﹣12)]+[(﹣3)+6]
=﹣30+3
=﹣27;
②原式=﹣6×26××
=[(﹣6)×]×[26×]
=2×(﹣12)
=﹣24;
③原式=×48+×48﹣×48+×48
=﹣44+56﹣36+26
=2;
④原式=﹣9﹣8﹣(﹣93+93)﹣1
=﹣9﹣8﹣0﹣1
=﹣18;
⑤原式=2x2﹣2y2﹣3x2y﹣3x2+3x2y+3y2
=﹣x2+y2,
当x=﹣1,y=2时,
原式=﹣(﹣1)2+22
=﹣1+4
=3.
【点睛】
此题主要考查了有理数的混合运算,整式的加减—化简求值,注意明确有理数混合运算顺序(先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算);掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“−”号,去掉“−”号和括号,括号里的各项都变号)是解题关键.
相关试卷
这是一份数学第六章 整式的运算综合与测试练习,共17页。试卷主要包含了下列结论中,正确的是,下列运算中,正确的是,下列运算正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试同步达标检测题,共17页。试卷主要包含了下列计算正确的是,单项式的系数和次数分别是,已知,,则,下列计算中,正确的是,已知整数等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试课后复习题,共17页。试卷主要包含了下列运算中正确的是,下列运算正确的是,多项式+1的次数是,计算的结果是,已知整数等内容,欢迎下载使用。