初中数学北京课改版七年级下册第六章 整式的运算综合与测试练习题
展开这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试练习题,共18页。试卷主要包含了下列运算正确的是,多项式的次数和常数项分别是,下列判断正确的是,计算的结果是,下列计算正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知下列一组数:1,,,,,…;用代数式表示第n个数,则第n个数是( )
A. B. C. D.
2、观察下列这列式子:,,,,,…,则第n个式子是( )
A. B.
C. D.
3、已知一个正方形的边长为a+1,则该正方形的面积为( )
A.a2+2a+1 B.a2-2a+1 C.a2+1 D.4a+4
4、如图所示的运算程序中,若开始输入x的值为2,则第2022次输出的结果是( )
A.-6 B.-3 C.-8 D.-2
5、下列运算正确的是( )
A.x2+x2=2x4 B.x2∙x3=x6 C.(x2)3=x6 D.(-2x)2=-4x2
6、多项式的次数和常数项分别是( )
A.1和 B.和 C.2和 D.3和
7、下列判断正确的是( )
A.3a2bc与bca2不是同类项
B.和都是单项式
C.单项式﹣x3y2的次数是3
D.多项式3x2﹣y+2xy2是三次三项式
8、计算的结果是( )
A. B. C. D.
9、下列计算正确的是( )
A.a+3a=4a B.b3•b3=2b3 C.a3÷a=a3 D.(a5)2=a7
10、观察图中点阵,发现第①个图中有5个点,第②个图中有12个点,第③个图中有22个点,第④个图中有35个点,…,按此规律,则第⑩个图有( )个点
A.145 B.176 C.187 D.210
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、图中的四边形均为长方形,根据图形,写出一个正确的等式:____________.
2、已知x-2y+3=0,则代数式4y-2x-1的值为________.
3、观察下列方程:
解是;
的解是;
的解是;
根据观察得到的规律,写出解是的方程是______.
写出解是的方程是______.
4、单项式的系数是____________
5、对a,b,c,d定义一种新运算:,如,计算_________.
三、解答题(5小题,每小题10分,共计50分)
1、若,,且、互为倒数,求的值.
2、(1)在数轴上分别画出表示下列3个数的点:﹣(﹣4),﹣|﹣3.5|,+(﹣),
(2)有理数x,y在数轴上对应点如图所示:
①试把x,y,0,﹣x,|y|这五个数从小到大用“<”号连接;
②化简:|x+y|﹣|y﹣x|+|y|.
3、如图1是2022年1月的月历.
(1)带阴影的方框是相邻三行里同一列的三个数,不改变带阴影的方框的大小,将方框移动几个位置试试,三个数之和能否为36?请运用方程的知识说明理由:
(2)如图2,带阴影的框是“7”字型框,设框中的四个数之和为t,则
①t是否存在最大值,若存在,请求出.若不存在,请说明理由;
②t能否等于92,请说明理由.
4、先化简,再求值:,其中,.
5、如图,在长方形ABCD中,AD=8,DC=6,点M是边AB的中点,动点P以每秒1个单位长度的速度从点A出发沿AD向终点D运动.设运动时间为t秒.
(1)用含t的代数式表示线段PD= ;
(2)求阴影部分的面积(用含t的代数式表示);
(3)当t=5秒时,求出阴影部分的面积.
---------参考答案-----------
一、单选题
1、B
【分析】
根据题意仔细观察给出的数字,找出其中存在的规律从而解题即可.
【详解】
解:∵1=;
;
;
∴第n个数是:.
故选:B.
【点睛】
本题考查数字找规律,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.
2、C
【分析】
根据题意得:第1个式子:,第2个式子:,第3个式子:,第4个式子:,第5个式子:,…,由此发现规律,即可求解 .
【详解】
解:根据题意得:第1个式子:,
第2个式子:,
第3个式子:,
第4个式子:,
第5个式子:,
…,
由此发现,第 个式子: .
故选:C
【点睛】
本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键.
3、A
【分析】
由题意根据正方形的面积公式可求该正方形的面积,再根据完全平方公式计算即可求解.
【详解】
解:该正方形的面积为(a+1)2=a2+2a+1.
故选:A.
【点睛】
本题主要考查列代数式,解题的关键是熟练掌握正方形的面积公式以及完全平方公式.
4、B
【分析】
先分别求出第1-8次输出的结果,再归纳类推出一般规律,由此即可得出答案.
【详解】
解:第1次输出的结果为;
第2次输出的结果为;
第3次输出的结果为;
第4次输出的结果为;
第5次输出的结果为;
第6次输出的结果为;
第7次输出的结果为;
第8次输出的结果为,
…,
由此可知,从第2次开始,输出的结果是以−4,−2,−1,−6,−3,−8循环往复的,
因为,
所以第2022次输出的结果与第6次输出的结果相同,即为−3,
故选:B.
【点睛】
本题考查了程序流程图与代数式求值,正确归纳类推出一般规律是解题关键.
5、C
【分析】
根据合并同类项,同底数幂相乘,幂的乘方,积的乘方法则逐项判断即可求解.
【详解】
解:A、 ,故本选项错误,不符合题意;
B、 ,故本选项错误,不符合题意;
C、 ,故本选项正确,符合题意;
D、 ,故本选项错误,不符合题意;
故选:C
【点睛】
本题主要考查了合并同类项,同底数幂相乘,幂的乘方,积的乘方,熟练掌握合并同类项,同底数幂相乘,幂的乘方,积的乘方法则是解题的关键.
6、D
【分析】
多项式的次数是其中最大的非零项的次数;多项式中不含字母的项是常数项.
【详解】
解:有题意可知多项式的次数为3,常数项为
故选D.
【点睛】
本题考查了多项式的次数和常数项.解题的关键在于正确判断次数所在的项.常数项的符号是易错点.
7、D
【分析】
选项A根据同类项的定义判断即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项;选项B、C根据单项式的定义判断即可,单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;一个单项式中所有字母的指数的和叫做单项式的次数;选项D根据多项式的定义判断即可,多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.
【详解】
解:A、 3a2bc与bca2所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意;
B、是多项式,故原说法错误,故本选项不合题意;
C、单项式﹣x3y2的次数是5,故本选项不合题意;
D、多项式3x2﹣y+2xy2是三次三项式,故本选项符合题意;
故选:D.
【点睛】
本题考查了同类项,单项式和多项式,熟记相关定义是解答本题的关键.
8、A
【分析】
先计算乘方,再计算除法,即可求解.
【详解】
解:.
故选:A
【点睛】
本题主要考查了幂的混合运算,熟练掌握幂的乘方,同底数相除的法则是解题的关键.
9、A
【分析】
根据合并同类项判断A选项;根据同底数幂的乘法判断B选项;根据同底数幂的除法判断C选项;根据幂的乘方判断D选项.
【详解】
解:A选项,原式=4a,故该选项符合题意;
B选项,原式=b6,故该选项不符合题意;
C选项,原式=a2,故该选项不符合题意;
D选项,原式=a10,故该选项不符合题意;
故选:A.
【点睛】
此题考查了整式的计算:合并同类项、同底数幂乘法、同底数幂除法、幂的乘方法则,熟记各法则是解题的关键.
10、B
【分析】
根据已知图形得第个图形中黑点数为,据此求解可得.
【详解】
解:图①中黑点的个数,
图②中黑点的个数,
图③中黑点的个数,
第个图形中黑点的个数为,
第⑩个图形中黑点的个数为.
故选:B.
【点睛】
本题主要考查图形的变化规律,解题的关键是根据已知图形得出第个图形中黑点的个数为.
二、填空题
1、 (x+2y)(x+y)=
【分析】
根据图形,从两个角度计算长方形面积即可求出答案.
【详解】
解:大长方形的面积=(x+2y)(x+y),
大长方形的面积= ,
∴(x+2y)(x+y)=,
故答案为:(x+2y)(x+y)=.
【点睛】
本题考查多项式乘以多项式,解题的关键是熟练运用运算法则.
2、5
【分析】
先根据已知等式可得,再将其作为整体代入计算即可得.
【详解】
解:由得:,
则,
,
,
故答案为:5.
【点睛】
本题考查了代数式求值,熟练掌握整体思想是解题关键.
3、
【分析】
观察所给的三个方程及方程的解,把方程变形,方程的解与第一个式子的分母有关系,得出规律 的解是,据此规律求解即可得.
【详解】
解:的解是;方程变形为,方程的解为;
的解是;方程变形为,方程的解为;
的解是;方程变形为,方程的解为;
……
由规律可知: 的解是,
当时,,
,
即,
当时,,
,
即,
故答案为:①;②.
【点睛】
本题考查方程的解与方程规律问题,理解题意,找出规律是解题关键.
4、-
【分析】
根据单项式的次数的定义(单项式中的数字因数是单项式的系数)解决此题.
【详解】
解:单项式的系数是,
故答案为:.
【点睛】
本题主要考查单项式的系数,熟练掌握单项式的系数的定义是解决本题的关键.
5、
【分析】
根据新定义规则把行列式化为常规乘法,利用多项式乘法法则展开,合并同类项即可.
【详解】
解:.
故答案为:.
【点睛】
本题考查新定义,整式的乘法混合运算,掌握新定义规则,整式的乘法混合运算法则是解题关键.
三、解答题
1、-17
【解析】
【分析】
根据整式的加减可先化简,由题意可得,然后问题可求解.
【详解】
解:,,
,
,互为倒数,
,
则原式.
【点睛】
本题主要考查整式的化简求值,熟练掌握整式的加减运算是解题的关键.
2、(1)见解析;(2)①<<0<<;②
【解析】
【分析】
(1)首先化简各数,进而在数轴上表示即可;
(2)①结合数轴进而比较各数即可;
②利用数轴进而去绝对值得出答案.
【详解】
解:(1)-(-4)=4,-|-3.5|=-3.5,+(-)=-,
如图所示:
;
(2)①由x,y在数轴上的位置可得:<<0<<;
(3)由题意得:y<0,x>0,,
∴x+y>0,y-x<0,
∴原式=
=
=
【点睛】
本题主要考查了有理数大小比较以及数轴和绝对值,正确判断出各项符号是解题关键.
3、(1)三数之和不为36,理由见解析;(2)①t存在最大值且最大值为88;②t不能等于92,理由见解析.
【解析】
【分析】
(1)设中间行的那个数为x(x>7),则同一列上一行的数为x-7,同一列下一行的数为x+7,然后求和即可判断和说明;
(2)①设中间行的那个数为x(9<x<24),则其余数分别为x-7、x-8、x+7,然后求和,即可说明;②根据①确定t的取值范围,然后判断即可.
【详解】
解:(1)三数之和不为36,理由如下:
设中间行的那个数为x(x>7),则同一列上一行的数为x-7,同一列下一行的数为x+7,
所以这三个数之和为:(x-7)+x+(x+7)=3x
只有x=12时,三数之和为36,故三数之和不为36;
(2)①t存在最大值且最大值为88
设中间行的那个数为x(9<x<24),则其余数分别为x-7、x-8、x+7,
所以,t=(x-8)+(x-7)+x+(x+7)=4x-8(9<x<24)
当x=24时,t有最大值88;
②t不能等于92,理由如下:
由①得t=4x-8(9<x<24)
所以t的取值范围为24<t<88
所以t不能等于92.
【点睛】
本题主要考查了整式的加减,发现日历中左右相邻的数相隔1、上下相邻的数相隔7是解答本题的关键. .
4、,
【解析】
【分析】
先利用完全平方公式和单项式乘多项式的运算法则去括号,然后再合并同类项,求出化简结果,将字母的值代入化简结果,求出整个代数式的值.
【详解】
解:原式
,
将,代入得:.
【点睛】
本题主要是考查了整式的化简求值,熟练掌握完全平方公式以及单项式乘多项式的法则,是求解本题的关键.
5、(1);(2);(3)
【解析】
【分析】
(1)根据路程等于速度乘以时间即可表示出,根据线段的差即可求得;
(2)根据即可求得求阴影部分的面积
(3)将t=5代入(2)的代数式中即可求解
【详解】
解:(1) AD=8,设运动时间为t秒,动点P以每秒1个单位长度的速度从点A出发沿AD向终点D运动
,
故答案为:
(2)四边形是长方形
点M是边AB的中点,
(3)当时,
【点睛】
本题考查了列代数式,代数式求值,表示出PD是解题的关键.
相关试卷
这是一份2020-2021学年第六章 整式的运算综合与测试巩固练习,共19页。试卷主要包含了下列叙述中,正确的是,单项式的系数和次数分别是,下列运算正确的是,有理数a等内容,欢迎下载使用。
这是一份数学七年级下册第六章 整式的运算综合与测试达标测试,共16页。试卷主要包含了下列各式中,计算结果为的是,下列计算正确的是,下列结论中,正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试随堂练习题,共18页。试卷主要包含了计算的结果是,下列叙述中,正确的是,下列计算正确的是,下列运算正确的是等内容,欢迎下载使用。