初中数学北京课改版七年级下册第六章 整式的运算综合与测试随堂练习题
展开这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试随堂练习题,共18页。试卷主要包含了计算的结果是,下列叙述中,正确的是,下列计算正确的是,下列运算正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、对于任意实数m,n,如果满足,那么称这一对数m,n为“完美数对”,记为(m,n).若(a,b)是“完美数对”,则3(3a+b)-(a+b-2)的值为 ( )
A.﹣2 B.0 C.2 D.3
2、下列结论中,正确的是( )
A.单项式的系数是3,次数是2
B.﹣xyz2单项式的系数为﹣1,次数是4
C.单项式a的次数是1,没有系数
D.多项式2x2+xy+3是四次三项式
3、若x2+mxy+25y2是一个完全平方式,那么m的值是( )
A.±10 B.-5 C.5 D.±5
4、计算的结果是( )
A. B. C. D.
5、下列叙述中,正确的是( )
A.单项式的系数是
B.a,π,52都是单项式
C.多项式3a3b+2a2﹣1的常数项是1
D.是单项式
6、下列计算正确的是( )
A. B.
C. D.
7、数左手手指,1为大拇指,数到第2011时对应的手指是( )
A.无名指 B.食指 C.中指 D.大拇指
8、下列运算正确的是( )
A. B. C. D.
9、若(a﹣2)x3+x2(b+1)+1是关于x的二次二项式,则a,b的值可以是( )
A.0,0 B.0,﹣1 C.2,0 D.2,﹣1
10、下列运算正确的是( )
A.a3•a3=a9 B.a5÷a3=a2 C.(a3)2=a5 D.(a2b)3=a2b3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若关于、的多项式中不含项,则______.
2、、两个数在数轴上的位置如图所示,则化简的结果是________.
3、有若干个大小形状完全相同的小长方形现将其中4个如图1摆放,构造出一个正方形,其中阴影部分面积为34;其中5个如图2摆放,构造出一个长方形,其中阴影部分面积为100(各个小长方形之间不重叠不留空),则每个小长方形的面积为______.
4、数a,b在数轴上的位置如图所示,化简:|b﹣a|+|b|=______.
5、观察下面一列数,1,2,﹣3,﹣4,5,6,﹣7,﹣8,9,10,﹣11,﹣12,…则这列数的第2013个数是______.
三、解答题(5小题,每小题10分,共计50分)
1、完全平方公式:适当的变形,可以解决很多的数学问题.
例如:若,求的值.
解:因为
所以
所以
得.
根据上面的解题思路与方法,解决下列问题:
(1)若,求的值;
(2)若,则 ;
(3)如图,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.
2、如图①是将一个边长为的大正方形的一角截去一个边长为的小正方形(阴影部分),然后将图①剩余部分拼接成如图②的一个大长方形(阴影部分).
(1)请用两种不同的方法列式表示图②中大长方形的面积:
方法一: ;
方法二: ;
(2)根据探究的结果,直接写出这三个式子之间的等量关系;
(3)利用你发现的结论,求的值.
3、若,求的值.
4、 “十▪一”黄金周期间,九寨沟在7天假期中每天接待游客的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)
日期 | 10月1日 | 10月2日 | 10月3日 | 10月4日 | 10月5日 | 10月6日 | 10月7日 |
人数变化(万人) | +1.6 | +0.8 | +0.4 | ﹣0.4 | ﹣0.8 | +0.2 | ﹣1.4 |
(1)若9月30日的游客人数为a万人,则10月2日的游客人数为 万人;
(2)七天内游客人数最大的是10月 日;
(3)若门票每人220元.请求出黄金周期间九寨沟门票总收入是多少万元?
5、计算下列各题
(1) (2)
---------参考答案-----------
一、单选题
1、C
【分析】
先根据“完美数对”的定义,从而可得,再去括号,计算整式的加减,然后将整体代入即可得.
【详解】
解:由题意得:,即,
则,
,
,
,
,
故选:C.
【点睛】
本题考查了整式加减中的化简求值,掌握理解“完美数对”的定义是解题关键.
2、B
【分析】
根据多项式的概念以及单项式系数、次数的定义对各选项分析判断即可得解.
【详解】
解:A、单项式的系数是,次数是3,故本选项错误不符合题意;
B、﹣xyz2的系数是-1,次数是4,故本选项正确符合题意;
C、单项式a的次数是1,系数是1,故本选项错误不符合题意;
D、多项式2x2+xy+3是二次三项式,故本选项错误不符合题意.
故选:B.
【点睛】
本题考查了多项式和单项式,熟记单项式数与字母的积的代数式,多项式是几个单项式的和等相关概念是解题的关键.
3、A
【分析】
先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.
【详解】
解:∵x2+mxy+25y2=x2+mxy+(5y)2,
∴mxy=±2x×5y,
解得:m=±10.
故选:A.
【点睛】
本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键.
4、C
【分析】
根据同底数幂乘法的计算方法,即可得到答案.
【详解】
故选:C.
【点睛】
本题考查了同底数幂乘法的知识;解题的关键是熟练掌握同底数幂乘法的计算方法,从而完成求解.
5、B
【分析】
根据单项式的定义,单项式的系数的定义,多项式的项的定义逐个判断即可.
【详解】
解:A.单项式的系数是,故本选项不符合题意;
B.a,π,52都是单项式,故本选项符合题意;
C.多项式3a3b+2a2﹣1的常数项是﹣1,故本选项不符合题意;
D.是多项式,不是单项式,故本选项不符合题意;
故选:B.
【点睛】
本题主要考查了单项式的定义,单项式的系数和多项式的定义,准确分析判断是解题的关键.
6、C
【分析】
根据幂的运算及整式的乘法运算即可作出判断.
【详解】
A、,故计算不正确;
B、,故计算不正确;
C、,故计算正确;
D、,故计算不正确.
故选:C
【点睛】
本题考查了同底数幂的除法、积的乘方、同类项合并、单项式乘多项式等知识,掌握这些知识是关键.
7、C
【分析】
根据题意可得::第一次是五个数,以后每一次都是四个数,所以先减去1,可得每两个循环是“食指、中指、无名指、小拇指、无名指、中指、食指、大拇指”,从而得到2011是从2开始的第2011﹣1=2010个数,可得2011是第503个循环组的第2个数,即可求解.
【详解】
解:根据题意得:第一次是五个数,以后每一次都是四个数,所以先减去1,可得每两个循环是“食指、中指、无名指、小拇指、无名指、中指、食指、大拇指”,
∵2011是从2开始的第2011﹣1=2010个数,
∴2010÷8=251…2,
∴2011是第252个循环组的第2个数,
∴第2011与3的位置相同,即中指的位置.
故选:C
【点睛】
本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键.
8、B
【分析】
根据同底数幂的乘除法,积的乘方,幂的乘方的计算法则求解即可.
【详解】
解:A、,计算错误,不符合题意;
B、,计算正确,符合题意;
C、,计算错误,不符合题意;
D、,计算错误,不符合题意;
故选B.
【点睛】
本题主要考查了同底数幂的乘除法,积的乘方,幂的乘方,熟知相关计算法则是解题的关键.
9、C
【分析】
根据二次二项式的定义得到,求出,得到选项.
【详解】
解:∵(a﹣2)x3+x2(b+1)+1是关于x的二次二项式,
∴,
∴,
故选:C.
【点睛】
此题考查多项式的次数及项数的定义,熟记定义是解题的关键.
10、B
【分析】
直接利用积的乘方运算法则、同底数幂的乘除运算法则分别判断得出答案.
【详解】
解:A.a3•a3=a6,故此选项不合题意;
B.a5÷a3=a2,故此选项符合题意;
C.(a3)2=a6,故此选项不合题意;
D.(a2b)3=a6b3,故此选项不合题意;
故选:B.
【点睛】
此题主要考查了积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.
二、填空题
1、3
【分析】
先合并关于xy的同类项,再令项的系数等于零求解.
【详解】
解:
=,
∵多项式中不含项,
∴-2k+6=0,
∴k=3.
故答案为:3.
【点睛】
本题考查了整式的加减---无关型问题,解答本题的关键是理解题目中代数式的取值与哪一项无关的意思,与哪一项无关,就是合并同类项后令其系数等于0,由此建立方程,解方程即可求得待定系数的值.
2、a
【分析】
由数轴得,,,去绝对值有,从而得出结果.
【详解】
解:,
故答案为:.
【点睛】
本题考查了数轴,去绝对值.解题的关键与难点在于判断绝对值里数值的正负.
3、8
【分析】
设长方形的长为a,宽为b,由图1可得,(a+b)2-4ab=34,由图2可得,(2a+b)(a+2b)-5ab=100,再利用整体思想进行变形求解即可.
【详解】
解:设长方形的长为a,宽为b,
由图1可得,(a+b)2-4ab=34, 即a2+b2=2ab+34①,
由图2可得,(2a+b)(a+2b)-5ab=100, 即a2+b2=50②,
由①②得,2ab+34=50, 所以ab=8,
即长方形的面积为8,
故答案为:8.
【点睛】
本题考查的是完全平方公式,多项式乘以多项式在几何图形中的应用,熟练的应用整式的乘法运算解决问题是解本题的关键.
4、b+a
【分析】
根据数a,b在数轴上的位置得出,然后化简绝对值即可.
【详解】
解:根据数a,b在数轴上的位置可得:
,
∴,,
∴|b﹣a|+|b|=,
故答案为:.
【点睛】
本题考查了在数轴上表示有理数,化简绝对值,根据点在数轴上的位置得出相应式子的正负是解本题的关键.
5、2013
【分析】
由题意得出这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数,据此解答即可.
【详解】
解:根据题意可知,这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数,
据此第2013个数的绝对值是2013,
∵2013÷4=503…1,
∴第2013个数为正数,
则第2013个数为2013,
故答案为:2013.
【点睛】
本题主要考查了数字的变化规律,根据已知数的规律得出这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数是解题的关键.
三、解答题
1、(1);(2)17;(3)
【解析】
【分析】
(1)仿照题意,利用完全平方公式求值即可;
(2)先求出,然后仿照题意利用完全平方公式求解即可;
(3)设AC的长为a,BC的长为b,则AB=AC+BC=a+b=6,,由,得到,由此仿照题意,利用完全平方公式求解即可.
【详解】
解:(1)∵,,
∴,
∴,
∴,
∴;
(2)∵,,
∴,,
∴,
故答案为:17;
(3)设AC的长为a,BC的长为b,
∴AB=AC+BC=a+b=6,
∴
∵,
∴,
∴,
∴,
又∵四边形BCFG是正方形,
∴CF=CB,
∴.
【点睛】
本题主要考查了完全平方公式的变形求值,解题的关键在于能够准确读懂题意.
2、(1);(2);(3)708000
【解析】
【分析】
(1)方法1:用a为边长的正方形面积减去小正方形面积即可;方法2:直接读取图②中大长方形的长与宽,再求面积;
(2)根据a2-b2和(a+b)(a-b)表示同一个图形的面积进行判断;根据图形可以写出等量关系;
(3)根据a2-b2=(a+b)(a-b),进行计算即可得到答案.
【详解】
解:(1)由图可知,
方法1:图②中大长方形的面积为:a2-b2,
方法2:图②中大长方形的面积为:(a+b)(a-b),
故答案为:a2-b2,(a+b)(a-b);
(2)由图可得,
这三个式子之间的等量关系是:a2-b2=(a+b)(a-b),
故答案为:a2-b2=(a+b)(a-b);
(3)解:原式=
=
=708000
【点睛】
本题主要考查了平方差公式的几何背景,解决问题的关键是运用两种不同的方式表达同一个图形的面积,进而得出一个等式,这是数形结合思想的运用.
3、25
【解析】
【分析】
首先根据完全平方公式可得,进而得到(x−1)2+(y+3)2=0,再根据偶次幂的性质可得x−1=0,y+3=0,求得x、y,再代入求得答案即可.
【详解】
解:∵,
∴x2−2x+1+y2+6y+9=0,
∴(x−1)2+(y+3)2=0,
∴x−1=0,y+3=0,
∴x=1,y=−3,
∴(2x−y)2=(2+3)2=25.
【点睛】
此题主要考查了配方法的运用,非负数的性质,关键是掌握完全平方公式:a2±2ab+b2=(a±b)2.
4、(1)a+2.4;(2)3;(3)黄金周期间九寨沟门票总收入是(1540a+2860)万元.
【解析】
【分析】
(1)10月2日的游客人数为a+1.6+0.8;
(2)分别用a的代数式表示七天内游客人数,再找出最多的人数,以及对应的日期即可;
(3)先求出七天游客人数再乘以220元,即可得黄金周期间该公园门票的收入.
【详解】
解:(1)若9月30日的游客人数为a万人,则10月2日的游客人数为a+2.4万人;
故答案为:a+2.4;
(2)(2)3七天内游客人数分别是a+1.6,a+2.4,a+2.8,a+2.4,a+1.6,a+1.8,a+0.4,
所以3日人最多.
故答案为:3;
(3)依题意得黄金周游客总人数为:
a+1.6+a+2.4+a+2.8+a+2.4+a+1.6+a+1.8+a+0.4
=7a+13(万人).
那么,总收入为220×(7a+13)=1540a+2860(万元).
答:黄金周期间九寨沟门票总收入是(1540a+2860)万元.
【点睛】
本题考查正数和负数的知识,整式加减的应用,解题关键是要读懂题目,根据题目给出的条件,列式计算.
5、(1);(2).
【解析】
【分析】
(1)先进行积的乘方计算,再计算乘法即可;
(2)先分别利用完全平方公式公式和平方差公式计算,在进行合并同类项即可.
【详解】
解:(1)
;
(2)
.
【点睛】
本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.
相关试卷
这是一份数学七年级下册第六章 整式的运算综合与测试达标测试,共16页。试卷主要包含了下列各式中,计算结果为的是,下列计算正确的是,下列结论中,正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试练习题,共18页。试卷主要包含了下列运算正确的是,多项式的次数和常数项分别是,下列判断正确的是,计算的结果是,下列计算正确的是等内容,欢迎下载使用。
这是一份数学北京课改版第六章 整式的运算综合与测试同步测试题,共17页。试卷主要包含了若,,求的值是,下列计算正确的是等内容,欢迎下载使用。