北京课改版七年级下册第六章 整式的运算综合与测试课后练习题
展开这是一份北京课改版七年级下册第六章 整式的运算综合与测试课后练习题,共22页。试卷主要包含了一同学做一道数学题,下列各式中,计算正确的是,下列计算正确的是,下列等式成立的是,下列运算正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算课时练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图所示的运算程序中,若开始输入x的值为2,则第2022次输出的结果是( )
A.-6 B.-3 C.-8 D.-2
2、化简x-2(x+1)的结果是( )
A.-x-2 B.-x+2 C.x+2 D.x-2
3、下列说法不正确的是( )
A.的系数是 B.2不是单项式
C.单项式的次数是2 D.是多项式
4、一同学做一道数学题:“已知两个多项式,,其中,求”,这位同学却把看成,求出的结果是,那么多项式是( )
A. B.
C. D.
5、下列各式中,计算正确的是( )
A.(3a)2=3a2 B.-2(a-1)=-2a+1
C.5a2-a2=4a2 D.4a2b-2ab2=2ab2
6、下列计算正确的是( )
A.3(x﹣1)=3x﹣1 B.x2+x2=2x4
C.x+2y=3xy D.﹣0.8ab+ab=0
7、下列等式成立的是( )
A. B.
C. D.
8、下列运算正确的是( )
A. B.
C. D.
9、如果多项式xm-3+5x-3是关于x的三次三项式,那么m的值为( )
A.0 B.3 C.6 D.9
10、如图,在边长为的正方形中,剪去一个边长为a的小正方形,将余下部分对称剪开,拼成一个平行四边形,根据两个图形阴影部分面积的关系,可以得到一个关于x,a的恒等式是( ).
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、将同样大小的正方形按下列规律摆放,下面的图案中,在第n个图案中所有正方形的个数是_________个.(用含n的式子表示)
2、a是不为1的有理数,我们把称为a的和谐数.已知,a2是a1的和谐数,a3是a2的和谐数,a4是a3的和谐数,……,依此类推.
(1)a3=_____;
(2)a2021=_____.
3、一只昆虫从点A处出发,以每分钟2米的速度在一条直线上运动,它先前进1米,再后退2米,又前进3米,再后退4米,…依此规律继续走下去,则运动1小时时这只昆虫与A点相距______米.
4、若关于、的多项式中不含项,则______.
5、如图,边长为a和2的两个正方形拼在一起,试写出阴影部分的面积为_____.(结果要化简)
三、解答题(5小题,每小题10分,共计50分)
1、【教材呈现】图①、图②、图③分别是华东师大版八年级上册数学教材第33页、第34页和第52页的图形,结合图形解决下列问题:
(1)分别写出能够表示图①、图②中图形的面积关系的乘法公式: , .
(2)图③是用四个长和宽分别为a、b的全等长方形拼成的一个正方形(所拼图形无重叠、无缝隙),写出代数式(a+b)2、(a-b)2、4ab之间的等量关系: .
【结论应用】根据上面(2)中探索的结论,回答下列问题:
(3)当m+n=5,mn=4时,求m-n的值.
(4)当,B=m-3时,化简(A+B)2-(A-B)2.
2、在数学习题课中,同学们为了求的值,进行了如下探索:
(1)某同学设计如图1所示的几何图形,将一个面积为1的长方形纸片对折.
(I)求图1中部分④的面积;
(II)请你利用图形求的值;
(III)受此启发,请求出的值;
(2)请你利用备用图,再设计一个能求与的值的几何图形.
3、先化简,再求值:
(1)3(2x2﹣xy)﹣4(﹣6+xy+x2),其中x=1,y=﹣1.
(2)4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.
4、完全平方公式:适当的变形,可以解决很多的数学问题.
例如:若,求的值.
解:因为
所以
所以
得.
根据上面的解题思路与方法,解决下列问题:
(1)若,求的值;
(2)若,则 ;
(3)如图,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.
5、如图1是一个长为、宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.
(1)观察图2,请你直接写出下列三个代数式之间的等量关系为_______;
(2)运用你所得到的公式解答下列问题:
①若为实数,且,,求的值.
②如图3,,分别表示边长为的正方形的面积,且三点在一条直线上,若,求图中阴影部分的面积.
---------参考答案-----------
一、单选题
1、B
【分析】
先分别求出第1-8次输出的结果,再归纳类推出一般规律,由此即可得出答案.
【详解】
解:第1次输出的结果为;
第2次输出的结果为;
第3次输出的结果为;
第4次输出的结果为;
第5次输出的结果为;
第6次输出的结果为;
第7次输出的结果为;
第8次输出的结果为,
…,
由此可知,从第2次开始,输出的结果是以−4,−2,−1,−6,−3,−8循环往复的,
因为,
所以第2022次输出的结果与第6次输出的结果相同,即为−3,
故选:B.
【点睛】
本题考查了程序流程图与代数式求值,正确归纳类推出一般规律是解题关键.
2、A
【分析】
去括号合并同类项即可.
【详解】
解:x-2(x+1)
=x-2x-2
=-x-2.
故选A.
【点睛】
本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.
3、B
【分析】
单项式:数字与字母的积,单个的数或单个的字母也是单项式,其中的数字因数是单项式的系数,单项式中所有字母的指数和是单项式的次数,几个单项式的和是多项式,根据定义逐一分析即可.
【详解】
解:的系数是,故A不符合题意;
2是单项式,原说法错误,故B符合题意;
单项式的次数是2,故C不符合题意;
是多项式,故D不符合题意;
故选B
【点睛】
本题考查的是单项式的定义,单项式的系数与次数,多项式的概念,掌握以上基础概念是解本题的关键.
4、A
【分析】
由,,代入计算即可求出A的值.
【详解】
解:∵,
由题意知:,
则:A=,
A=,
=,
故选:A
【点睛】
本题主要考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.
5、C
【分析】
分别利用合并同类项,去括号法则,积的乘方运算法则分析得出即可.
【详解】
解:A、(3a)2=9a2,故选项错误,不符合题意;
B、-2(a-1)= -2a+2,故选项错误,不符合题意;
C、5a2-a2=4a2,故选项正确,符合题意;
D、4a2b和2ab2不是同类项,所以不能合并,故选项错误,不符合题意.
故选:C.
【点睛】
此题考查了合并同类项,积的乘方运算,解题的关键是熟练掌握合并同类项,去括号法则,积的乘方运算法则.
6、D
【分析】
根据去括号和合并同类项的法则逐一判断即可.
【详解】
解:A、,计算错误,不符合题意;
B、计算错误,不符合题意;
C、与不是同类项,不能合并,不符合题意;
D、,计算正确,符合题意;
故选D.
【点睛】
本题主要考查了去括号和合并同类项,熟知相关计算法则是解题的关键.
7、D
【分析】
利用同底数幂的乘法法则,完全平方公式,幂的乘方对各项进行运算即可.
【详解】
解:A、,故A不符合题意;
B、,故B不符合题意;
C、,故C不符合题意;
D、,故D符合题意;
故选:D.
【点睛】
本题考查了同底数幂的乘法法则,完全平方公式,幂的乘方,掌握同底数幂的乘法法则,完全平方公式,幂的乘方运算法则是解题的关键.
8、C
【分析】
根据同底数幂的乘除法法则以及积的乘方法则,幂的乘方法则,逐一判断选项,即可.
【详解】
解:A. ,故该选项错误,
B. ,故该选项错误,
C. ,故该选项正确,
D. ,故该选项错误,
故选C.
【点睛】
本题主要考查同底数幂的乘除法法则以及积的乘方法则,熟练掌握上述法则是解题的关键.
9、C
【分析】
直接利用多项式的定义得出m-3=3,进而求出即可.
【详解】
解:∵整式xm-3+5x-3是关于x的三次三项式,
∴m-3=3,
解得:m=6.
故选:C.
【点睛】
本题考查了多项式的概念,几个单项式的和叫做多项式,多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.
10、C
【分析】
根据公式分别计算两个图形的面积,由此得到答案.
【详解】
解:正方形中阴影部分的面积为,
平行四边形的面积为x(x+2a),
由此得到一个x,a的恒等式是,
故选:C.
【点睛】
此题考查了平方差公式与几何图形,正确掌握图形面积的计算方法是解题的关键.
二、填空题
1、4n-1
【分析】
根据题意分析可得:第1个图案中正方形的个数4×1-1=3个,第2个图案中正方形的个数4×2-1=7个,…,根据找到的规律可求出第n个图案中所有正方形的个数.
【详解】
解:观察图案,发现:
第1个图案中,有4×1-1=3个正方形;
第2个图案中,有4×2-1=7个正方形;
第3个图案中,有4×3-1=11个正方形;
……
则第n个图案中正方形的个数是4n-1.
故答案为:4n-1.
【点睛】
此题考查了整式的规律问题,解题的关键是正确分析题目中正方形的个数和序号的关系.
2、
【分析】
(1)从开始,分别求出a2= ,a3= 即可;
(2)求出a4=﹣ ,发现规律每3个数循环一次,可知a2021=a2=.
【详解】
解:(1)∵,
∴a2==,
a3==,
(2)a4==﹣,
∴每3个数循环一次,
∵2021÷3=673…2,
∴a2021=a2=.
故答案为:;
【点睛】
本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键.
3、8
【分析】
由于这只昆虫的速度为2米分钟,所以“前进1米,再后退2米”共用了1.5分钟,此时实际上向后只退了一米;“前进3米,再后退4米”共用了3.5分钟,此时实际上也只向后退了一米.由此不难看出,后一次运动比前一次多用2分钟,每次实际上都是向后退一米.然后根据规律列式计算即可.
【详解】
解:1小时分,
规定昆虫每前进一次和后退一次为一运动周期,则设昆虫的运动周期数为,每一周期所用总时间为.
设每周期前进的距离为,则;
由题意可得:;
假设昆虫运动所用总时间为;则;
当分时,代入上式中可得但还剩余7.5分钟,由公式可得第8周需要15.5分钟,但是每一周期中后退时间比前进时间多0.5分钟,所以在第8周期中前进时间为7.5分钟,后退时间为8分钟.
由于运动一个周期后退一米,所以运动7个周期就后退7米,由于在60分钟内运动完7周期后正好剩余7.5分钟,这样在第8周期就正好前进的距离米,故运动1小时时这只昆虫与点相距为米.
故填8.
【点睛】
本题主要考查代数式规律问题,认真审题,找出规律,是解决此类问题的关键所在.
4、3
【分析】
先合并关于xy的同类项,再令项的系数等于零求解.
【详解】
解:
=,
∵多项式中不含项,
∴-2k+6=0,
∴k=3.
故答案为:3.
【点睛】
本题考查了整式的加减---无关型问题,解答本题的关键是理解题目中代数式的取值与哪一项无关的意思,与哪一项无关,就是合并同类项后令其系数等于0,由此建立方程,解方程即可求得待定系数的值.
5、
【分析】
根据题意利用阴影部分的面积为:S正方形ABCD+S正方形MCEF+S△DMF﹣S△ABD﹣S△BEF进而求出答案.
【详解】
解:如图所示:当a=4cm时阴影部分的面积为:
S正方形ABCD+S正方形MCEF+S△DMF﹣S△ABD﹣S△BEF
=a×a+2×2+×(a- 2)×2﹣×a×a﹣×2×(a+ 2)
=
=,
故答案为:.
【点睛】
此题主要考查了列代数式和整式的运算,正确理解总面积减去空白面积=阴影部分面积,列出算式进行计算是解题关键.
三、解答题
1、(1),;(2);(3);(4)
【解析】
【分析】
(1)根据图①的面积可表示成以为边长的正方形的面积,或表示成2个分别以为边长的正方形的面积加上2个边长分别为的长方形的面积,即;根据图②可以表示成边长为的正方形的面积等于边长为的正方形的面积减去2个边长分别为的长方形的面积再加上边长为的正方形的面积,即;
(2)根据图③可知,边长为的正方形的面积减去中间边长为的正方形的面积等于4个边长分别为的长方形的面积,据此即可写出代数式(a+b)2、(a-b)2、4ab之间的等量关系;
(3)根据(2)的结论计算即可;
(4)由(2)的结论可得,代入数值进行计算即可;
【详解】
(1)根据图①可得:,根据图②可得:
故答案为:,
(2)根据图③可得:
故答案为:
(3)∵.
∴.
(4)∵,
∴原式=.
【点睛】
本题考查了完全平方公式与图形的面积,根据完全平方公式变形求值,掌握完全平方公式是解题的关键.
2、(1)(I);(II);(III);(2)见解析.
【解析】
【分析】
(1)(ⅰ)根据题目中的图形和题意,计算出部分④的面积即可;(ⅱ)根据图形,可以所求式子的值即可;(ⅲ)根据(2)中的结果,直接写出所求式子的值即可;
(2)将长方形分成两个全等的三角形,然后继续分割两个小一点的全等三角形,依次继续分割即可即可解答(答案不唯一).
【详解】
解:(1)(ⅰ)由题意可得,部分④的面积是;
(ⅱ)由题意可得:;
(ⅲ)根据(2)中的结果,可推到出:=;
(2)可设计如图所示:
(答案不唯一,符合题意即可).
【点睛】
本题主要考查了数字的变化规律、有理数的混合运算等知识点,明确题意并灵活利用数形结合的思想是解答本题的关键.
3、(1)2x2﹣7xy+24,33;(2)5xy+y2,-6
【解析】
【分析】
(1)先去括号,再合并同类项把原式化简,最后代入计算即可.
(2)先去括号,再合并同类项把原式化简,最后代入计算即可.
【详解】
(1)解:原式=6x2﹣3xy+24﹣4xy﹣4x2
=2x2﹣7xy+24,
当x=1,y=﹣1时,原式=2×12﹣7×1×(﹣1)+24=2+7+24=33.
(2)原式=4xy﹣2x2﹣5xy+y2+2x2+6xy
=5xy+y2,
当x=1,y=﹣2时,
原式=5×1×(﹣2)+(﹣2)2
=﹣10+4
=﹣6.
【点睛】
本题考查的是整式的化简求值,掌握整式的加减混合运算法则是解题的关键.
4、(1);(2)17;(3)
【解析】
【分析】
(1)仿照题意,利用完全平方公式求值即可;
(2)先求出,然后仿照题意利用完全平方公式求解即可;
(3)设AC的长为a,BC的长为b,则AB=AC+BC=a+b=6,,由,得到,由此仿照题意,利用完全平方公式求解即可.
【详解】
解:(1)∵,,
∴,
∴,
∴,
∴;
(2)∵,,
∴,,
∴,
故答案为:17;
(3)设AC的长为a,BC的长为b,
∴AB=AC+BC=a+b=6,
∴
∵,
∴,
∴,
∴,
又∵四边形BCFG是正方形,
∴CF=CB,
∴.
【点睛】
本题主要考查了完全平方公式的变形求值,解题的关键在于能够准确读懂题意.
5、(1)(a+b)2=4ab+(a﹣b)2;(2)①m﹣n=4或m﹣n=﹣4;②阴影部分面积为8.
【解析】
【分析】
(1)结合图形可得:大正方形面积=四个矩形的面积+中间小正方形的面积,表示出各个图形的面积,三者关系式即可得;
(2)①根据(1)中结论可得:,然后将已知式子的值代入化简即可;
②根据题意可得:,且,将其代入完全平方公式中化简可得:,结合图形,求阴影部分面积即可.
【详解】
解:
(1)由图可知,
大正方形面积=四个矩形的面积+中间小正方形的面积,
即,
故答案为:;
(2)①∵,,
∴,
∴,
∴或;
②∵,分别表示边长为p,q的正方形的面积,
∴,,
∵,
∴,
∵,
∴
∴,,
∴,
由图可知,阴影部分面积为:,
∴阴影部分面积为8.
【点睛】
题目主要考查完全平方公式在求几何图形面积中的应用,理解题意,结合图形,熟练运用两个完全平方公式的变形是解题关键.
相关试卷
这是一份2021学年第六章 整式的运算综合与测试精练,共19页。试卷主要包含了已知,下列计算正确的是,有理数a,多项式+1的次数是等内容,欢迎下载使用。
这是一份数学七年级下册第六章 整式的运算综合与测试课时训练,共16页。试卷主要包含了下列计算正确的有,下列叙述中,正确的是,下列说法不正确的是,已知整数,观察下列各式,下列运算正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试同步练习题,共19页。试卷主要包含了下列等式成立的是,下列计算正确的是等内容,欢迎下载使用。