北京课改版第六章 整式的运算综合与测试同步达标检测题
展开
这是一份北京课改版第六章 整式的运算综合与测试同步达标检测题,共17页。试卷主要包含了下列计算正确的是,把多项式按的降幂排列,正确的是,下列说法中等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列运算正确的是( )A.x2+x2=2x4 B.x2∙x3=x6 C.(x2)3=x6 D.(-2x)2=-4x22、下列数字的排列:2,12,36,80,那么下一个数是( )A.100 B.125 C.150 D.1753、下列说法正确的是( )A.是单项式 B.0不是单项式C.是单项式 D.是单项式4、下列计算正确的是( )A. B.C. D.5、如图,在边长为的正方形中,剪去一个边长为a的小正方形,将余下部分对称剪开,拼成一个平行四边形,根据两个图形阴影部分面积的关系,可以得到一个关于x,a的恒等式是( ).A. B.C. D.6、如果代数式的值为7,那么代数式的值为( )A. B.2 C. D.07、1883年,康托尔构造了一个分形,称作康托尔集,从数轴上单位长度线段开始,康托尔取走其中间三分之一而达到第一阶段,然后从每一个余下的三分之一线段中取走其中间三分之一而达到第二阶段,无限地重复这一过程,余下的无穷点集就称做康托尔集,如图是康托尔集的最初几个阶段,当达到第n个阶段时,余下的所有线段的长度之和为( )A. B. C. D.8、把多项式按的降幂排列,正确的是( )A. B.C. D.9、下列说法中:(1)整数与分数统称为有理数;(2)如果两个数的绝对值相等,那么这两个数相等;(3)多项式是五次二项式;(4)倒数等于它本身的数是;(5)与是同类项,其中正确的有( )A.1个 B.2个 C.3个 D.4个10、下列运算正确的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将初一年级的500名同学从1到500编号,并按编号从小到大的顺序站成一排报数1、2、3…,报到奇数的退下,偶数的留下,留下的同学从编号小的开始继续报数1、2、3…,报到奇数的退下,偶数的留下,…,如此继续,最后留下一个同学,则最后留下的这个同学编号是_____.2、单项式-的系数是__________.3、用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第21个图案需要棋子_______枚.4、计算:+÷=____________. 5、①52﹣4×12=21;②72﹣4×22=33;③92﹣4×32=45;④112﹣4×42=57…根据上述规律,用含n的代数式表示第n个等式:_____.三、解答题(5小题,每小题10分,共计50分)1、先化简,在求值:其中,. 2、我们用表示一个三位数,其中x表示百位上的数,y表示十位上的数,z表示个位上的数,即.(1)说明一定是111的倍数;(2)①写出一组a,b,c的取值,使能被7整除,这组值可以是a= ,b= ,c= ;②若能被7整除,则a,b,c三个数必须满足的数量关系是 .3、王老师在黑板上写下了四个算式:①;②;③;④;……认真观察这些算式,并结合你发现的规律,解答下列问题:(1) ; .(2)小华发现上述算式的规律可以用文字语言概括为:“两个连续奇数的平方差能被8整除”,如果设两个连续奇数分别为2n+1和2n-1(n为正整数),请你用含有n的算式验证小华发现的规律.4、先化简再求值:(1),其中a=1,b=2.(2),其中x=.5、已知A=,B=,(1)求A﹣2B;(2)若A-2B的值与的取值无关,求的值. ---------参考答案-----------一、单选题1、C【分析】根据合并同类项,同底数幂相乘,幂的乘方,积的乘方法则逐项判断即可求解.【详解】解:A、 ,故本选项错误,不符合题意;B、 ,故本选项错误,不符合题意;C、 ,故本选项正确,符合题意;D、 ,故本选项错误,不符合题意;故选:C【点睛】本题主要考查了合并同类项,同底数幂相乘,幂的乘方,积的乘方,熟练掌握合并同类项,同底数幂相乘,幂的乘方,积的乘方法则是解题的关键.2、C【分析】由2=1+1=13+12,12=8+4=23+22,36=27+9=33+32,80=64+16=43+42,可得第n个数为n3+n2,由此求解即可.【详解】解:∵2=1+1=13+12,12=8+4=23+22,36=27+9=33+32,80=64+16=43+42,∴下一个数是53+52=125+25=150.(第n个数为n3+n2).故选C.【点睛】本题主要考查了数字类的规律探索,根据题意找到规律是解题的关键.3、C【分析】根据单项式的定义逐个判断即可.【详解】解:A、是分式,不是整式,不是单项式,故本选项不符合题意;B、0是单项式,故本选项不符合题意;C、是单项式,正确,故本选项符合题意;D、是多项式,不是单项式,故本选项不符合题意;故选:C.【点睛】本题考查了单项式的定义,能熟记单项式的定义是解此题的关键,注意:表示数与数或数与字母的积的形式,叫单项式,单独一个数或单独一个字母也是单项式.4、C【分析】由合并同类项可判断A,由积的乘方运算可判断B,C,由同底数幂的除法运算可判断D,从而可得答案.【详解】解:不是同类项,不能合并,故A不符合题意;故B不符合题意;,运算正确,故C符合题意;故D不符合题意;故选C【点睛】本题考查的是合并同类项,积的乘方运算,同底数幂的除法运算,掌握以上基础运算是解本题的关键.5、C【分析】根据公式分别计算两个图形的面积,由此得到答案.【详解】解:正方形中阴影部分的面积为,平行四边形的面积为x(x+2a),由此得到一个x,a的恒等式是,故选:C.【点睛】此题考查了平方差公式与几何图形,正确掌握图形面积的计算方法是解题的关键.6、D【分析】根据题意可得,变形为,将其代入代数式求解即可.【详解】解:∵,∴,∴,∴,故选:D.【点睛】题目主要考查求代数式的值,理解题意,将已知式子变形是解题关键.7、C【分析】根据题意具体表示前几个式子,然后总结归纳规律,即可得到答案.【详解】解:由题意得:第一阶段时,余下的线段的长度之和为, 第二阶段时,余下的线段的长度之和为, 第三阶段时,余下的线段的长度之和为, … 以此类推, 当达到第n个阶段时(n为正整数),余下的线段的长度之和为. 故选:C.【点睛】本题考查有理数的乘方的应用,图形类的变化规律,找出余下的线段的长度之和之间的联系,得出规律是解本题的关键.8、D【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【详解】解:把多项式按的降幂排列:,故选:D【点睛】本题考查了多项式的知识,要注意,在排列多项式各项时,要保持其原有的符号.9、C【分析】根据有理数的定义及其分类标准,和绝对值、倒数的意义,多项式的定义,同类项的定义进行辨析即可.【详解】解:(1)整数与分数统称为有理数,说法正确;(2)如果两个数的绝对值相等,那么这两个数相等或互为相反数,原说法错误;(3)多项式是三次二项式,原说法错误;(4)倒数等于它本身的数是,说法正确;(5)与是同类项,说法正确;综上,说法正确的有(1)(4)(5),共3个,故选:C.【点睛】本题考查了多项式,倒数,有理数以及同类项,掌握相关定义是解答本题的关键.同类项的定义:所含字母相同且相同字母的指数也相同的项是同类项;多项式的次数是多项式中次数最高的单项式的次数;乘积是1的两个数互为倒数.10、B【分析】根据幂的运算和乘法公式逐项判断即可.【详解】解:A. ,原选项不正确,不符合题意;B. ,原选项正确,符合题意;C. ,原选项不正确,不符合题意;D. ,原选项不正确,不符合题意;故选:B.【点睛】本题考查了幂的运算和乘法公式,解题关键是熟记幂的运算法则和乘法公式.二、填空题1、256【分析】根据题意,可知一圈后留下的人是2的倍数的号;两圈后留下的人分别是4的倍数的号;三圈后留下的人是8的倍数的号;四圈后留下的人是16的倍数的号,…即只有256.【详解】解:由题意可知一圈后留下的人是2的倍数的号;两圈后留下的人分别是4的倍数的号;三圈后留下的人是8的倍数的号;四圈后留下的人是16的倍数的号∴经过n轮后(n为正整数),剩下同学的编号为2n;∵2n<500,即n<9,∴当圆圈只剩一个人时,n=8,∴这个同学的编号为2n=28=256.故答案为:256.【点睛】本题主要考查了数字类的规律型问题,有理数的乘方,解题的关键在于发现留下的人的编号与2之间的关系.2、【分析】根据单项式中系数的概念求解即可.【详解】解:单项式-的系数是:.故答案为:.【点睛】此题考查了单项式中系数的概念,解题的关键是熟练掌握单项式中系数的概念.单项式:由数和字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式.单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数.3、【分析】图案中,黑色棋子个数为;图案中,黑色棋子个数为;图案中,黑色棋子个数为;得出规律,进而求解出图案中,黑色棋子个数.【详解】解:图案中,黑色棋子个数为;图案中,黑色棋子个数为;图案中,黑色棋子个数为;得出规律为图案中,黑色棋子个数为;当时,黑色棋子个数为故答案为:.【点睛】本题主要考察了总结规律.解题的关键在于是否能够根据数据的特征推导出规律.4、【分析】由题意先计算同底数幂的乘法和同底数幂的除法,最后合并同类项即可得出答案.【详解】解:+÷=.故答案为:.【点睛】本题考查整式的乘除,熟练掌握同底数幂的乘法和同底数幂的除法运算是解题的关键.5、(2n+3)2﹣4n2=12 n +9【分析】通过观察发现,式子的第一个数是从5开始的奇数,第二个数是从1开始的自然的平方的4倍,所得结果是12n+9,由此可求解.【详解】解:∵①52﹣4×12=21;②72﹣4×22=33;③92﹣4×32=45;④112﹣4×42=57…,∴第n个式子是:(2n+3)2﹣4n2=12 n +9.故答案为:(2n+3)2﹣4n2=12 n +9【点睛】本题考查了根据式子找规律,并表示规律,根据题意,找出各式中变化的规律是解题关键.三、解答题1、;1【解析】【分析】根据整式的加减计算法则和去括号法则化简,然后代值计算即可.【详解】解:,当,时,原式.【点睛】本题主要考查了整式的化简求值和去括号,解题的关键在于能够熟练掌握相关计算法则.2、(1)证明见解析;(2)①;②或或【解析】【分析】(1)列代数表示,再合并同类项,再利用乘法的分配律进行变形,从而可得答案;(2)①由,可得一定是7的因数,从而可得答案;②由能被7整除,可得一定是7的因数,而都为至的正整数,从而可得答案.【详解】解:(1) 一定是的倍数.(2)① ,而不是的因数,所以一定是7的因数,令 则 故答案为:(答案不唯一)② 能被7整除,所以一定是7的因数,而都为至的正整数,则a,b,c三个数必须满足的数量关系为:或或【点睛】本题考查的是列代数式,乘法的分配律的应用,合并同类项,整除的含义,掌握“用代数式表示一个三位数”是解本题的关键.3、(1),;(2)见解析【解析】【分析】(1)根据题目给出的规律写出和即可;(2)利用平方差公式计算得出答案.【详解】(1),,故答案为:,;(2),∵n为正整数,∴两个连续奇数的平方差是8的倍数.【点睛】此题主要考查了平方差公式的应用,正确发现数字变化规律是解题关键.4、(1),2;(2),.【解析】【分析】(1)先去括号,再计算整式的加减,然后将的值代入计算即可得;(2)先去括号,再计算整式的加减,然后将的值代入计算即可得.【详解】解:(1)原式,,将代入得:原式;(2)原式,,将代入得:原式.【点睛】本题考查了整式加减中的化简求值,熟练掌握整式的加减运算法则是解题关键.5、(1);(2)【解析】【分析】(1)将A、B的值代入A﹣2B化简即可.(2)与a的取值无关,即a的系数为零.【详解】解:(1)A-2B=去括号得A-2B =化简得A-2B=(2)A-2B =∵A-2B的值与a的取值无关∴∴【点睛】本题考查了整式的加减以及整式加减中无关型的问题,这类题需要将整式进行整理化简,化成关于某个未知量的降幂或升幂的形式后,令题中不含某次项的系数为零即可.
相关试卷
这是一份数学第六章 整式的运算综合与测试练习,共17页。试卷主要包含了下列结论中,正确的是,下列运算中,正确的是,下列运算正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试同步达标检测题,共17页。试卷主要包含了下列计算正确的是,单项式的系数和次数分别是,已知,,则,下列计算中,正确的是,已知整数等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试课时作业,共17页。试卷主要包含了观察下列这列式子,下列结论中,正确的是,下列运算正确的是等内容,欢迎下载使用。