数学七年级下册第六章 整式的运算综合与测试一课一练
展开这是一份数学七年级下册第六章 整式的运算综合与测试一课一练,共18页。试卷主要包含了下列计算正确的是,下列结论中,正确的是,下列说法中等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算同步练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各式中,计算结果为x10的是( )
A.x5+x5 B.x2•x5 C.x20÷x2 D.(x5)2
2、下列结论中,正确的是( )
A.单项式的系数是3,次数是2
B.单项式m的次数是1,没有系数
C.多项式x2+y2﹣1的常数项是1
D.多项式x2+2x+18是二次三项式
3、下列数字的排列:2,12,36,80,那么下一个数是( )
A.100 B.125 C.150 D.175
4、已知动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,第三次向左移动3厘米,第四次向右移动4厘米,……,移动第2022次到达点B,则点B在点A点的( )
A.左侧1010厘米 B.右侧1010厘米
C.左侧1011厘米 D.右侧1011厘米
5、下列计算正确的是( )
A.3(x﹣1)=3x﹣1 B.x2+x2=2x4
C.x+2y=3xy D.﹣0.8ab+ab=0
6、下列结论中,正确的是( )
A.单项式的系数是3,次数是2
B.﹣xyz2单项式的系数为﹣1,次数是4
C.单项式a的次数是1,没有系数
D.多项式2x2+xy+3是四次三项式
7、下列说法中:(1)整数与分数统称为有理数;(2)如果两个数的绝对值相等,那么这两个数相等;(3)多项式是五次二项式;(4)倒数等于它本身的数是;(5)与是同类项,其中正确的有( )
A.1个 B.2个 C.3个 D.4个
8、下列计算正确的是( )
A. B.
C. D.
9、已知一个正方形的边长为a+1,则该正方形的面积为( )
A.a2+2a+1 B.a2-2a+1 C.a2+1 D.4a+4
10、下列说法正确的是( )
A.﹣的系数是﹣5
B.1﹣2ab+4a是二次三项式
C.不属于整式
D.“a,b的平方差”可以表示成(a﹣b)2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知关于x、y的多项式(a+b)+(a-3)-2(b+2)+2ax+1不含项,则当x=-1时,这个多项式的值为__________.
2、将同样大小的正方形按下列规律摆放,下面的图案中,在第n个图案中所有正方形的个数是_________个.(用含n的式子表示)
3、观察下列单项式x,,,,,…,,,…,猜想第n个单项式是_______________.
4、若am=10,an=6,则am+n=_____.
5、若关于、的多项式是二次三项式,则_______.
三、解答题(5小题,每小题10分,共计50分)
1、计算:
(1)
(2)
2、先化简,再求值:(5a2﹣3b)﹣3(a2﹣2b),其中a=﹣,b=.
3、在任意n位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”,若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如31568的“顺数”为361568,31568的“逆数”为315668,31568的“顺数”与“逆数”之差为,,所以31568是“最佳拍档数”.
(1)请根据以上方法判断1324______(选填“是”或“不是”)最佳拍档数.
(2)若一个首位是4的四位“最佳拍档数”N,其个位数字与十位数字之和为7,且百位数字不大于十位数字,求所有符合条件的N的值.
4、阅读下列材料:
利用完全平方公式,可以把多项式变形为的形式.例如,==.
观察上式可以发现,当取任意一对互为相反数的值时,多项式的值是相等的.例如,当=±1,即=3或1时,的值均为0;当=±2,即=4或0时,的值均为3.
我们给出如下定义:
对于关于的多项式,若当取任意一对互为相反数的值时,该多项式的值相等,则称该多项式关于=对称,称=是它的对称轴.例如,关于=2对称,=2是它的对称轴.
请根据上述材料解决下列问题:
(1)将多项式变形为的形式,并求出它的对称轴;
(2)若关于的多项式关于=-5对称,则= ;
(3)代数式的对称轴是= .
5、计算:.
---------参考答案-----------
一、单选题
1、D
【分析】
利用合并同类项的法则,同底数幂的乘法的法则,同底数幂的除法的法则,幂的乘方的法则对各项进行运算即可.
【详解】
解:A、x5+x5=2x5,故A不符合题意;
B、x2•x5=x7,故B不符合题意;
C、x20÷x2=x18,故C不符合题意;
D、(x5)2=x10,故D符合题意;
故选D.
【点睛】
本题主要考查了合并同类项,同底数幂乘法,同底数幂除法,幂的乘方,熟知相关计算法则是解题的关键.
2、D
【详解】
根据单项式和多项式的相关定义解答即可得出答案.
【分析】
解:A、单项式的系数是,次数是3,原说法错误,故此选项不符合题意;
B、单项式m的次数是1,系数也是1,原说法错误,故此选项不符合题意;
C、多项式x2+y2﹣1的常数项是﹣1,原说法错误,故此选项不符合题意;
D、多项式x2+2x+18是二次三项式,原说法正确,故此选项符合题意.
故选D.
【点睛】
本题主要考查了单项式的定义,单项式的次数、系数的定义,多项式的定义及其次数的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数.
3、C
【分析】
由2=1+1=13+12,12=8+4=23+22,36=27+9=33+32,80=64+16=43+42,可得第n个数为n3+n2,由此求解即可.
【详解】
解:∵2=1+1=13+12,
12=8+4=23+22,
36=27+9=33+32,
80=64+16=43+42,
∴下一个数是53+52=125+25=150.
(第n个数为n3+n2).
故选C.
【点睛】
本题主要考查了数字类的规律探索,根据题意找到规律是解题的关键.
4、D
【分析】
由动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,则此时对应的数为: 第三次向左移动3厘米,第四次向右移动4厘米,则此时对应的数为: 归纳可得所以每两次移动的结果是往右移动了1个单位长度,结合从而可得答案.
【详解】
解:动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,
则此时对应的数为:
第三次向左移动3厘米,第四次向右移动4厘米,
则此时对应的数为:
所以每两次移动的结果是往右移动了1个单位长度,
所以移动第2022次到达点B,则对应的数为:
所以点B在点A点的右侧1011厘米处.
故选D
【点睛】
本题考查的是数轴上的动点问题,数字的规律探究,有理数的加减运算,除法运算,掌握“从具体到一般的探究方法,再总结规律运用规律”是解本题的关键.
5、D
【分析】
根据去括号和合并同类项的法则逐一判断即可.
【详解】
解:A、,计算错误,不符合题意;
B、计算错误,不符合题意;
C、与不是同类项,不能合并,不符合题意;
D、,计算正确,符合题意;
故选D.
【点睛】
本题主要考查了去括号和合并同类项,熟知相关计算法则是解题的关键.
6、B
【分析】
根据多项式的概念以及单项式系数、次数的定义对各选项分析判断即可得解.
【详解】
解:A、单项式的系数是,次数是3,故本选项错误不符合题意;
B、﹣xyz2的系数是-1,次数是4,故本选项正确符合题意;
C、单项式a的次数是1,系数是1,故本选项错误不符合题意;
D、多项式2x2+xy+3是二次三项式,故本选项错误不符合题意.
故选:B.
【点睛】
本题考查了多项式和单项式,熟记单项式数与字母的积的代数式,多项式是几个单项式的和等相关概念是解题的关键.
7、C
【分析】
根据有理数的定义及其分类标准,和绝对值、倒数的意义,多项式的定义,同类项的定义进行辨析即可.
【详解】
解:(1)整数与分数统称为有理数,说法正确;
(2)如果两个数的绝对值相等,那么这两个数相等或互为相反数,原说法错误;
(3)多项式是三次二项式,原说法错误;
(4)倒数等于它本身的数是,说法正确;
(5)与是同类项,说法正确;
综上,说法正确的有(1)(4)(5),共3个,
故选:C.
【点睛】
本题考查了多项式,倒数,有理数以及同类项,掌握相关定义是解答本题的关键.同类项的定义:所含字母相同且相同字母的指数也相同的项是同类项;多项式的次数是多项式中次数最高的单项式的次数;乘积是1的两个数互为倒数.
8、C
【分析】
根据幂的运算及整式的乘法运算即可作出判断.
【详解】
A、,故计算不正确;
B、,故计算不正确;
C、,故计算正确;
D、,故计算不正确.
故选:C
【点睛】
本题考查了同底数幂的除法、积的乘方、同类项合并、单项式乘多项式等知识,掌握这些知识是关键.
9、A
【分析】
由题意根据正方形的面积公式可求该正方形的面积,再根据完全平方公式计算即可求解.
【详解】
解:该正方形的面积为(a+1)2=a2+2a+1.
故选:A.
【点睛】
本题主要考查列代数式,解题的关键是熟练掌握正方形的面积公式以及完全平方公式.
10、B
【分析】
根据代数式,整式,单项式与多项式的相关概念解答即可.
【详解】
解:A、﹣的系数是﹣,原说法错误,故此选项不符合题意;
B、1﹣2ab+4a是二次三项式,原说法正确,故此选项符合题意;
C、属于整式,原说法错误,故此选项不符合题意;
D、“a,b的平方差”可以表示成a2﹣b2,原说法错误,故此选项不符合题意;
故选:B.
【点睛】
此题考查了代数式,整式,单项式与多项式,解题的关键是掌握单项式和多项式的相关定义,多项式的次数是多项式中次数最高项的次数,多项式的项包括符号.
二、填空题
1、-6
【分析】
根据多项式里面不含项,直接令项的系数为0,求出、的值,再将、、的值代入多项式中,求出多项式的值即可.
【详解】
解:多项式里面不含项,
,,即,,
原多项式化简为:,
将x=-1代入多项式中,求得多项式的值为:,
故答案为:.
【点睛】
本题主要是考查了整式加减中的无关项问题,解题的关键在于熟练掌握整式的加减计算法则以及不含某项即某项的系数为0.
2、4n-1
【分析】
根据题意分析可得:第1个图案中正方形的个数4×1-1=3个,第2个图案中正方形的个数4×2-1=7个,…,根据找到的规律可求出第n个图案中所有正方形的个数.
【详解】
解:观察图案,发现:
第1个图案中,有4×1-1=3个正方形;
第2个图案中,有4×2-1=7个正方形;
第3个图案中,有4×3-1=11个正方形;
……
则第n个图案中正方形的个数是4n-1.
故答案为:4n-1.
【点睛】
此题考查了整式的规律问题,解题的关键是正确分析题目中正方形的个数和序号的关系.
3、(答案不唯一)
【分析】
根据已知单项式归纳类推出一般规律,由此即可得.
【详解】
第1个单项式为,
第2个单项式为,
第3个单项式为,
第4个单项式为,
第5个单项式为,
归纳类推得:第n的单项式为,其中n为正整数,
故答案为:.(答案不唯一)
【点睛】
本题考查了单项式规律题,观察已知单项式,正确归纳类推出一般规律是解题关键.
4、60
【分析】
逆用同底数幂乘法法则即可解题.
【详解】
解:am+n=am·an=106=60.
故答案为:60.
【点睛】
本题考查了同底数幂的乘法,熟记法则并根据法则计算是解题关键.
5、
【分析】
直接利用多项式系数与次数确定方法得出−2m−1=0,进而得出答案.
【详解】
解:∵关于x、y的多项式2x2+3mxy−y2−xy−5是二次三项式,
∴3mxy−xy=0,
则3m−1=0,
解得:m=.
故答案为:.
【点睛】
此题主要考查了多项式,正确掌握相关定义是解题关键.
三、解答题
1、(1);(2)
【解析】
【详解】
(1)
(2)
【点睛】
本题考查了有理数的混合运算,整式的加减运算是解题的关键.
2、2a2+3b,
【解析】
【分析】
先去括号合并同类项,然后把a=﹣,b=代入计算即可.
【详解】
解:(5a2﹣3b)﹣3(a2﹣2b)
=5a2﹣3b﹣3a2+6b
= 2a2+3b,
当a=﹣,b=时,
原式=
=
=.
【点睛】
本题考查了整式的加减-化简求值,一般先把所给整式去括号合并同类项,再把所给字母的值或代数式的值代入计算.
3、(1)是;(2)4152或4661
【解析】
【分析】
(1)根据定义得出1324的“顺数”与“逆数”,计算“顺数”与“逆数”的差,根据是否能被17整除即可得答案;
(2)设十位数字为x,百位数字为y,可得0≤x≤7,0≤y≤7,y≤x,根据“最佳拍档数”的定义可得是整数,进而可得出x、y的值,即可得答案.
【详解】
(1)1324的“顺数”与“逆数”分别为16324和13264,
∵=180,
∴1324是“最佳拍档数”.
故答案为:是
(2)设十位数字为x,百位数字为y,
∵个位数字与十位数字之和为7,百位数字不大于十位数字,
∴个位数字为(7),
∴N=4000+100y+10x+7,0≤x≤7,0≤y≤7,y≤x,
[(46000+100y+10x+7)(40000+1000y+100x+60+7)]÷17
=
=349,
∵N为“最佳拍档数”,
∴为整数,
∵x、y都为整数,0≤x≤7,0≤y≤7,y≤x,
∴或,
∴N=4152或N=4661.
【点睛】
本题考查整式的加减,正确理解“顺数”、“逆数”、“最佳拍档数”的定义,熟练掌握合并同类项法则是解题关键.
4、(1),对称轴为x=3;(2)5;(3)
【解析】
【分析】
(1)加上,同时再减去,配方,整理,根据定义回答即可;
(2)将配成,根据对称轴的定义,对称轴为x=-a,
根据对称轴的一致性,求a即可;
(3)将代数式配方成
=,根据定义计算即可.
【详解】
(1)
=
=.
∴该多项式的对称轴为x=3;
(2)∵=,
∴对称轴为x=-a,
∵多项式关于=-5对称,
∴-a=-5,
即a=5,
故答案为:5;
(3)∵
=
=
=,
∴对称轴为x=,
故答案为:.
【点睛】
本题考查了配方法,熟练进行配方是解题的关键.
5、-x﹣5
【解析】
【分析】
先根据多项式乘以多项式法则和完全平方公式进行计算,再合并同类项即可.
【详解】
解:(x+1)(x﹣4)﹣(x﹣1)2
=x2﹣4x+x﹣4﹣x2+2x﹣1
=-x﹣5.
【点睛】
本题考查了整式的混合运算,能正确根据运算法则进行化简是解此题的关键.
相关试卷
这是一份初中北京课改版第六章 整式的运算综合与测试测试题,共15页。试卷主要包含了下列计算正确的是,下列运算正确的是,若,,求的值是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试课时训练,共18页。试卷主要包含了下面说法正确的是,下列关于整式的说法错误的是,下列去括号正确的是.等内容,欢迎下载使用。
这是一份数学七年级下册第六章 整式的运算综合与测试课后作业题,共17页。试卷主要包含了下列说法正确的是,下列关于整式的说法错误的是,下列计算正确的是,下列运算中正确的是,已知整数,下列叙述中,正确的是等内容,欢迎下载使用。