初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后测评
展开这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后测评,共18页。试卷主要包含了用“※”定义一种新运算,下列计算正确的是,把式子去括号后正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在边长为的正方形中,剪去一个边长为a的小正方形,将余下部分对称剪开,拼成一个平行四边形,根据两个图形阴影部分面积的关系,可以得到一个关于x,a的恒等式是( ).
A. B.
C. D.
2、一个两位数个位上的数是1,十位上的数是x,如果把1与x对调,新两位数与原两位数的和不可能是( )
A.66 B.99 C.110 D.121
3、下列说法正确的是( )
A.是单项式 B.0不是单项式
C.是单项式 D.是单项式
4、用“※”定义一种新运算:对于任何有理数a和b,规定.如,则的值为( )
A.-4 B.8 C.4 D.-8
5、下列计算正确的是( )
A.a+3a=4a B.b3•b3=2b3 C.a3÷a=a3 D.(a5)2=a7
6、如图是一组有规律的图案,第1个图案中有8个小正方形,第2个图案中有12个小正方形,第3个图案中有16个小正方形,…,依此规律,若第n个图案中有2400个小正方形,则n的值为( )
A.593 B.595 C.597 D.599
7、下列计算正确的是( )
A. B.
C. D.
8、下列各式中,计算结果为x10的是( )
A.x5+x5 B.x2•x5 C.x20÷x2 D.(x5)2
9、把式子去括号后正确的是( )
A. B. C. D.
10、下列结论中,正确的是( )
A.单项式的系数是3,次数是2
B.单项式m的次数是1,没有系数
C.多项式x2+y2﹣1的常数项是1
D.多项式x2+2x+18是二次三项式
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知,,则多项式的值为______.
2、单项式的系数是____________
3、如下图,把个两个电阻R1,R2串联起来,线路AB上的电流为I,电压为U,则,当,,时,则U的值为___________.
4、单项式的系数是______,次数是____.
5、观察下列三行数,并完成填空:
①﹣2,4,﹣8,16,﹣32,64,…
②1,﹣2,4,﹣8,16,﹣32,…
③0,﹣3,3,﹣9,15,﹣33,…
第①行数按一定规律排列,第2022个数是_____;若取每行数的第2022个数,计算这三个数的和为_____.
三、解答题(5小题,每小题10分,共计50分)
1、先化简,再求值:,其中,.
2、化简:a(a﹣2b)+(a+b)2.
3、先化简,再求值:(2x+3y)﹣4y﹣2(5x﹣3y),其中x=﹣5,y=﹣9
4、在任意n位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”,若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如31568的“顺数”为361568,31568的“逆数”为315668,31568的“顺数”与“逆数”之差为,,所以31568是“最佳拍档数”.
(1)请根据以上方法判断1324______(选填“是”或“不是”)最佳拍档数.
(2)若一个首位是4的四位“最佳拍档数”N,其个位数字与十位数字之和为7,且百位数字不大于十位数字,求所有符合条件的N的值.
5、计算:
(1);
(2);
(3);
(4).
---------参考答案-----------
一、单选题
1、C
【分析】
根据公式分别计算两个图形的面积,由此得到答案.
【详解】
解:正方形中阴影部分的面积为,
平行四边形的面积为x(x+2a),
由此得到一个x,a的恒等式是,
故选:C.
【点睛】
此题考查了平方差公式与几何图形,正确掌握图形面积的计算方法是解题的关键.
2、D
【分析】
先分别用代数式表示出原两位数和新两位数,然后根据整式的加减计算法则求出新两位数与原两位数的和,由此求解即可.
【详解】
解:∵一个两位数个位上的数是1,十位上的数是x,
∴这个两位数为,
∴把1与x对调后的新两位数为,
∴,
∴新两位数与原两位数的和一定是11的倍数,
∵原两位数十位上的数字是x,
∴(的正整数)
∴,
∴新两位数与原两位数的和不可能是121,
故选D.
【点睛】
本题主要考查了整式加减的应用,解题的关键在于能够熟练掌握整式的加减计算法则.
3、C
【分析】
根据单项式的定义逐个判断即可.
【详解】
解:A、是分式,不是整式,不是单项式,故本选项不符合题意;
B、0是单项式,故本选项不符合题意;
C、是单项式,正确,故本选项符合题意;
D、是多项式,不是单项式,故本选项不符合题意;
故选:C.
【点睛】
本题考查了单项式的定义,能熟记单项式的定义是解此题的关键,注意:表示数与数或数与字母的积的形式,叫单项式,单独一个数或单独一个字母也是单项式.
4、A
【分析】
根据定义的新运算法则代入计算即可.
【详解】
解:,
∴,
故选:A.
【点睛】
题目主要考查计算代数式的值,理解题目中心定义的运算是解题关键.
5、A
【分析】
根据合并同类项判断A选项;根据同底数幂的乘法判断B选项;根据同底数幂的除法判断C选项;根据幂的乘方判断D选项.
【详解】
解:A选项,原式=4a,故该选项符合题意;
B选项,原式=b6,故该选项不符合题意;
C选项,原式=a2,故该选项不符合题意;
D选项,原式=a10,故该选项不符合题意;
故选:A.
【点睛】
此题考查了整式的计算:合并同类项、同底数幂乘法、同底数幂除法、幂的乘方法则,熟记各法则是解题的关键.
6、D
【分析】
根据第1个图案中有8个小正方形,第2个图案中有12个小正方形,第3个图案中有16个小正方形……依此规律即可得出答案.
【详解】
解:第1个图案中小正方形的个数为:8,
第2个图案中小正方形的个数为:,
第3个图案中小正方形的个数为:……
依此规律,第个图案中小正方形的个数为:.
∴,
解得,
故选D
【点睛】
本题主要考查了图形规律题,解题的关键是找出它们之间的变化规律,按照这一变化规律进行解答即可.
7、C
【分析】
根据幂的运算及整式的乘法运算即可作出判断.
【详解】
A、,故计算不正确;
B、,故计算不正确;
C、,故计算正确;
D、,故计算不正确.
故选:C
【点睛】
本题考查了同底数幂的除法、积的乘方、同类项合并、单项式乘多项式等知识,掌握这些知识是关键.
8、D
【分析】
利用合并同类项的法则,同底数幂的乘法的法则,同底数幂的除法的法则,幂的乘方的法则对各项进行运算即可.
【详解】
解:A、x5+x5=2x5,故A不符合题意;
B、x2•x5=x7,故B不符合题意;
C、x20÷x2=x18,故C不符合题意;
D、(x5)2=x10,故D符合题意;
故选D.
【点睛】
本题主要考查了合并同类项,同底数幂乘法,同底数幂除法,幂的乘方,熟知相关计算法则是解题的关键.
9、C
【分析】
由去括号法则进行化简,即可得到答案.
【详解】
解:,
故选:C
【点睛】
本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.顺序为先大后小.
10、D
【详解】
根据单项式和多项式的相关定义解答即可得出答案.
【分析】
解:A、单项式的系数是,次数是3,原说法错误,故此选项不符合题意;
B、单项式m的次数是1,系数也是1,原说法错误,故此选项不符合题意;
C、多项式x2+y2﹣1的常数项是﹣1,原说法错误,故此选项不符合题意;
D、多项式x2+2x+18是二次三项式,原说法正确,故此选项符合题意.
故选D.
【点睛】
本题主要考查了单项式的定义,单项式的次数、系数的定义,多项式的定义及其次数的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数.
二、填空题
1、9
【分析】
多项式可变形为,然后整体代入即可求解.
【详解】
解:
,
∵,,
∴原式
,
故答案为:9.
【点睛】
本题主要考查了代数式求值,解题关键是掌握整体思想,将代数式变形为已知式相关的形式求解.
2、-
【分析】
根据单项式的次数的定义(单项式中的数字因数是单项式的系数)解决此题.
【详解】
解:单项式的系数是,
故答案为:.
【点睛】
本题主要考查单项式的系数,熟练掌握单项式的系数的定义是解决本题的关键.
3、295
【分析】
将,,,代入求解即可.
【详解】
解:将,,,代入可得:
,
,
,
故答案为:295.
【点睛】
题目主要考查求代数式的值,理解题意是解题关键.
4、 5
【分析】
根据单项式系数、次数的定义即可求解.
【详解】
解:单项式的系数是,次数是5.
故答案为,5.
【点睛】
本题考查了单项式的系数和次数,单项式的系数指单项式中的数字因数,次数指单项式中所有字母的指数和,注意是常数.
5、22022 -1
【分析】
利用数字的排列规律得到第①行数的第n个数字为(-2)n,第②行数的第n个数字为(-2)n-1,第③行数的第n个数字为(-2)n-1-1(n为正整数),然后根据规律求解.
【详解】
解:∵-2,4,-8,16,﹣32,64,…,
∴第①行各数是:(-2)1,(-2)2,(-2)3,(-2)4,(-2)5,(-2)6,…,
∴第①行第n个数是(-2)n,
∴第2022个数是22022;
∵第②行数是第①行对应数的-倍,
∴第②行第n个数是-×(-2)n=(-2)n-1;
∵第③行数比第②行对应数少1,
第③行第n个数是 (-2)n-1-1;
∴22022+(-2)2022-1+(-2)2022-1-1
=22022+(-2)2021+(-2)2021-1
=22022-22022-1
=-1.
故答案是:22022;1.
【点睛】
本题考查了规律型:数字的变化类:探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法.
三、解答题
1、,
【解析】
【分析】
先利用完全平方公式和单项式乘多项式的运算法则去括号,然后再合并同类项,求出化简结果,将字母的值代入化简结果,求出整个代数式的值.
【详解】
解:原式
,
将,代入得:.
【点睛】
本题主要是考查了整式的化简求值,熟练掌握完全平方公式以及单项式乘多项式的法则,是求解本题的关键.
2、
【解析】
【分析】
利用单项式乘以多项式和完全平方公式的计算法则去括号,然后合并同类项即可.
【详解】
解:
.
【点睛】
本题主要考查了整式的混合运算,熟知相关计算法则是解题的关键.
3、,-5
【解析】
【分析】
先去括号,然后根据整式的加减计算法则化简,最后代值计算即可.
【详解】
解:
,
当x=﹣5,y=﹣9时,原式
【点睛】
本题主要考查了去括号,整式的化简求值,解题的关键在于能够熟练掌握相关计算法则.
4、(1)是;(2)4152或4661
【解析】
【分析】
(1)根据定义得出1324的“顺数”与“逆数”,计算“顺数”与“逆数”的差,根据是否能被17整除即可得答案;
(2)设十位数字为x,百位数字为y,可得0≤x≤7,0≤y≤7,y≤x,根据“最佳拍档数”的定义可得是整数,进而可得出x、y的值,即可得答案.
【详解】
(1)1324的“顺数”与“逆数”分别为16324和13264,
∵=180,
∴1324是“最佳拍档数”.
故答案为:是
(2)设十位数字为x,百位数字为y,
∵个位数字与十位数字之和为7,百位数字不大于十位数字,
∴个位数字为(7),
∴N=4000+100y+10x+7,0≤x≤7,0≤y≤7,y≤x,
[(46000+100y+10x+7)(40000+1000y+100x+60+7)]÷17
=
=349,
∵N为“最佳拍档数”,
∴为整数,
∵x、y都为整数,0≤x≤7,0≤y≤7,y≤x,
∴或,
∴N=4152或N=4661.
【点睛】
本题考查整式的加减,正确理解“顺数”、“逆数”、“最佳拍档数”的定义,熟练掌握合并同类项法则是解题关键.
5、(1)-11;(2)5;(3);(4)x2.
【解析】
【分析】
(1)由题意先将减法统一成加法,然后再计算;
(2)根据题意先将除法统一成乘法,然后再计算;
(3)由题意先算乘方,然后算乘除,最后算加减;
(4)根据题意先去括号,然后合并同类项进行化简即可.
【详解】
解:(1)
=5+3+(-7)+(-12)
=8+(-7)+(-12)
=1+(-12)
=-(12-1)
=-11;
(2)
=
=5;
(3)
=
=
=;
(4)
=
=x2.
【点睛】
本题主要考查有理数的混合运算,整式的加减运算,注意明确有理数混合运算顺序(先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算),合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“-”号,去掉“-”号和括号,括号里的各项都变号)是解题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后复习题,共19页。试卷主要包含了下列运算正确的是,下列各式中,计算结果为的是,观察下列各式等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后测评,共18页。试卷主要包含了下列计算正确的是,把多项式按的降幂排列,正确的是,下列数字的排列,如果a﹣4b=0,那么多项式2,下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试习题,共19页。试卷主要包含了已知整数,下列运算中正确的是,观察下列各式,下列结论中,正确的是等内容,欢迎下载使用。