2020-2021学年第六章 整式的运算综合与测试测试题
展开这是一份2020-2021学年第六章 整式的运算综合与测试测试题,共16页。试卷主要包含了下列运算正确的是,若,,,则的值为,观察下列各式等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列运算正确的是( )
A. B. C. D.
2、下列表述正确的是( )
A.单项式ab的系数是0,次数是2 B.的系数是,次数是3
C.是一次二项式 D.的项是,3a,1
3、化简x-2(x+1)的结果是( )
A.-x-2 B.-x+2 C.x+2 D.x-2
4、如图是一组有规律的图案,第1个图案中有8个小正方形,第2个图案中有12个小正方形,第3个图案中有16个小正方形,…,依此规律,若第n个图案中有2400个小正方形,则n的值为( )
A.593 B.595 C.597 D.599
5、下列运算正确的是( )
A. B. C. D.
6、已知一个正方形的边长为a+1,则该正方形的面积为( )
A.a2+2a+1 B.a2-2a+1 C.a2+1 D.4a+4
7、若,,,则的值为( )
A. B. C.1 D.
8、观察下列各式:(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72;….请你根据观察得到的规律判断下列各式中正确的是( )
A.1005+1006+1007+…+3016=20112
B.1005+1006+1007+…+3017=20112
C.1006+1007+1008+…+3016=20112
D.1006+1008+1009+…+3017=20112
9、已知动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,第三次向左移动3厘米,第四次向右移动4厘米,……,移动第2022次到达点B,则点B在点A点的( )
A.左侧1010厘米 B.右侧1010厘米
C.左侧1011厘米 D.右侧1011厘米
10、把多项式按的降幂排列,正确的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知,则_______.
2、按由小到大的顺序排列三个连续奇数.
(1)已知第一个数的相反数是﹣1,则第三个数为 _____;
(2)设中间的数是2n+1(n为正整数),这三个数的和为 _____(用含n的式子表示).
3、单项式-的系数是__________.
4、用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第21个图案需要棋子_______枚.
5、数a,b在数轴上的位置如图所示,化简:|b﹣a|+|b|=______.
三、解答题(5小题,每小题10分,共计50分)
1、一辆大客车上原有人,中途有一半的乘客下车,又上来若干乘客,这时车上共有乘客人.
(1)求中途上车的乘客有多少人;(温馨提示:请用含有m,n的式子表示)
(2)当,时,中途上车的乘客有多少人?
2、计算:
(1)
(2)
3、在任意n位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”,若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如31568的“顺数”为361568,31568的“逆数”为315668,31568的“顺数”与“逆数”之差为,,所以31568是“最佳拍档数”.
(1)请根据以上方法判断1324______(选填“是”或“不是”)最佳拍档数.
(2)若一个首位是4的四位“最佳拍档数”N,其个位数字与十位数字之和为7,且百位数字不大于十位数字,求所有符合条件的N的值.
4、(1)计算:;
(2)先化简,再求值:,其中,.
5、先化简,再求值:,其中,.
---------参考答案-----------
一、单选题
1、A
【分析】
根据整式的加减运算、同底数幂的乘除运算,幂的乘方运算,求解即可.
【详解】
解:A、,选项正确,符合题意;
B、,选项错误,不符合题意;
C、,选项错误,不符合题意;
D、,选项错误,不符合题意;
故选:A
【点睛】
此题考查了整式的加减运算、同底数幂的乘除运算,幂的乘方运算,解题的关键是掌握整式的有关运算法则.
2、C
【分析】
直接利用单项式的次数与系数以及多项式的特点分别分析得出答案.
【详解】
解:A.单项式ab的系数是1,次数是2,故此选项不合题意;
B.的系数是,次数是5,故此选项不合题意;
C.x−1是一次二项式,故此选项符合题意;
D.的项是,3a,−1,故此选项不合题意;
故选:C.
【点睛】
此题主要考查了多项式和单项式,正确掌握单项式的次数确定方法是解题关键.
3、A
【分析】
去括号合并同类项即可.
【详解】
解:x-2(x+1)
=x-2x-2
=-x-2.
故选A.
【点睛】
本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.
4、D
【分析】
根据第1个图案中有8个小正方形,第2个图案中有12个小正方形,第3个图案中有16个小正方形……依此规律即可得出答案.
【详解】
解:第1个图案中小正方形的个数为:8,
第2个图案中小正方形的个数为:,
第3个图案中小正方形的个数为:……
依此规律,第个图案中小正方形的个数为:.
∴,
解得,
故选D
【点睛】
本题主要考查了图形规律题,解题的关键是找出它们之间的变化规律,按照这一变化规律进行解答即可.
5、B
【分析】
根据同底数幂的乘除法,积的乘方,幂的乘方的计算法则求解即可.
【详解】
解:A、,计算错误,不符合题意;
B、,计算正确,符合题意;
C、,计算错误,不符合题意;
D、,计算错误,不符合题意;
故选B.
【点睛】
本题主要考查了同底数幂的乘除法,积的乘方,幂的乘方,熟知相关计算法则是解题的关键.
6、A
【分析】
由题意根据正方形的面积公式可求该正方形的面积,再根据完全平方公式计算即可求解.
【详解】
解:该正方形的面积为(a+1)2=a2+2a+1.
故选:A.
【点睛】
本题主要考查列代数式,解题的关键是熟练掌握正方形的面积公式以及完全平方公式.
7、D
【分析】
根据同底数幂的除法的逆运算及幂的乘方的逆运算解答.
【详解】
解:∵,,
∴==3÷8=,
故选D.
【点睛】
本题考查了同底数幂的除法的逆运算及幂的乘方的逆运算,解题的关键是熟练掌握运算法则.
8、C
【分析】
根据已知条件找出数字规律:第n个等式是n+(n+1)+(n+2)+…+(n+2n-2)=(2n-1)2,其中n为正整数,依次判断各个式子即可得出结果.
【详解】
解:根据(1)1=12;
(2)2+3+4=32;
(3)3+4+5+6+7=52;
(4)4+5+6+7+8+9+10=7×7
可得出:n+(n+1)+(n+2)+…+(n+2n-2)=(2n-1)2,
∴1005+1006+1007+…+3013=20092
1006+1007+1008+…+3016=20112 ,
故选C.
【点睛】
本题主要考查了数字类的规律探索,解题的关键在于能够根据题意找到规律求解.
9、D
【分析】
由动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,则此时对应的数为: 第三次向左移动3厘米,第四次向右移动4厘米,则此时对应的数为: 归纳可得所以每两次移动的结果是往右移动了1个单位长度,结合从而可得答案.
【详解】
解:动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,
则此时对应的数为:
第三次向左移动3厘米,第四次向右移动4厘米,
则此时对应的数为:
所以每两次移动的结果是往右移动了1个单位长度,
所以移动第2022次到达点B,则对应的数为:
所以点B在点A点的右侧1011厘米处.
故选D
【点睛】
本题考查的是数轴上的动点问题,数字的规律探究,有理数的加减运算,除法运算,掌握“从具体到一般的探究方法,再总结规律运用规律”是解本题的关键.
10、D
【分析】
先分清多项式的各项,然后按多项式降幂排列的定义排列.
【详解】
解:把多项式按的降幂排列:
,
故选:D
【点睛】
本题考查了多项式的知识,要注意,在排列多项式各项时,要保持其原有的符号.
二、填空题
1、32
【分析】
根据幂的乘方进行解答即可.
【详解】
解:由2x+5y-3=2可得:2x+5y=5,
所以4x•32y=22x+5y=25=32,
故答案为:32.
【点睛】
本题考查幂的乘方,关键是根据幂的乘方法则解答.
2、5 6n+3
【分析】
(1)根据相反数的定义得到第一个数是1,再根据连续奇数的特点得到第三个数即可;
(2)根据连续奇数的特点得到另外两个数,根据整式的加法计算即可.
【详解】
解:(1)∵由小到大的顺序排列三个连续奇数的第一个数的相反数是﹣1,
∴第一个数是1,
∴这三个数分别为1,3,5,
故答案为:5;
(2)设由小到大的顺序排列三个连续奇数中间的数是2n+1(n为正整数),
则第一个数是2n-1,第三个数是2n+3,
∴这三个数的和为2n-1+2n+1+2n+3=6n+3,
故答案为:6n+3.
【点睛】
此题考查了相反数的定义,连续奇数的特点,整式的加减计算法则,熟记连续奇数的特点及正确掌握相反数的定义和整式加减法计算法则是解题的关键.
3、
【分析】
根据单项式中系数的概念求解即可.
【详解】
解:单项式-的系数是:.
故答案为:.
【点睛】
此题考查了单项式中系数的概念,解题的关键是熟练掌握单项式中系数的概念.单项式:由数和字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式.单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数.
4、
【分析】
图案中,黑色棋子个数为;图案中,黑色棋子个数为;图案中,黑色棋子个数为;得出规律,进而求解出图案中,黑色棋子个数.
【详解】
解:图案中,黑色棋子个数为;
图案中,黑色棋子个数为;
图案中,黑色棋子个数为;
得出规律为图案中,黑色棋子个数为;
当时,黑色棋子个数为
故答案为:.
【点睛】
本题主要考察了总结规律.解题的关键在于是否能够根据数据的特征推导出规律.
5、b+a
【分析】
根据数a,b在数轴上的位置得出,然后化简绝对值即可.
【详解】
解:根据数a,b在数轴上的位置可得:
,
∴,,
∴|b﹣a|+|b|=,
故答案为:.
【点睛】
本题考查了在数轴上表示有理数,化简绝对值,根据点在数轴上的位置得出相应式子的正负是解本题的关键.
三、解答题
1、(1);(2)18
【解析】
【分析】
(1)根据等量关系:车上现有人数=车上原有乘客数-中途下车人数+中途上车人数,即可求解;
(2)把,代入上式可得上车乘客人数.
【详解】
∵车上现有人数=车上原有乘客数-中途下车人数+上车人数
∴=+中途上车人数
∴中途上车人数==
(2)把,代入得
即当,时,中途上车的乘客有18人.
【点睛】
本题考查了整式的加减,要分析透题中的数量关系:车上现有人数=车上原有乘客数-中途下车人数+中途上车人数,用代数式表示各个量后代入即可.
2、(1);(2)
【解析】
【详解】
(1)
(2)
【点睛】
本题考查了有理数的混合运算,整式的加减运算是解题的关键.
3、(1)是;(2)4152或4661
【解析】
【分析】
(1)根据定义得出1324的“顺数”与“逆数”,计算“顺数”与“逆数”的差,根据是否能被17整除即可得答案;
(2)设十位数字为x,百位数字为y,可得0≤x≤7,0≤y≤7,y≤x,根据“最佳拍档数”的定义可得是整数,进而可得出x、y的值,即可得答案.
【详解】
(1)1324的“顺数”与“逆数”分别为16324和13264,
∵=180,
∴1324是“最佳拍档数”.
故答案为:是
(2)设十位数字为x,百位数字为y,
∵个位数字与十位数字之和为7,百位数字不大于十位数字,
∴个位数字为(7),
∴N=4000+100y+10x+7,0≤x≤7,0≤y≤7,y≤x,
[(46000+100y+10x+7)(40000+1000y+100x+60+7)]÷17
=
=349,
∵N为“最佳拍档数”,
∴为整数,
∵x、y都为整数,0≤x≤7,0≤y≤7,y≤x,
∴或,
∴N=4152或N=4661.
【点睛】
本题考查整式的加减,正确理解“顺数”、“逆数”、“最佳拍档数”的定义,熟练掌握合并同类项法则是解题关键.
4、(1)10;(2)ab2,9
【解析】
【分析】
(1)直接利用有理数的混合运算法则计算得出答案;
(2)直接去括号进而找出同类项,进而合并同类项,再把已知数据代入求出答案.
【详解】
解:(1)
=13-5+21-19
=10;
(2)
=2a2b+2ab2-2a2b+2-ab2-2
=ab2
当a=1,b=-3时,ab2=1×(-3)2=9.
【点睛】
此题主要考查了整式的加减以及有理数的混合运算,正确掌握相关运算法则是解题关键.
5、;.
【解析】
【分析】
先根据完全平方公式及平方差公式进行化简,然后计算除法,最后将已知值代入求解即可.
【详解】
解:,
,
,
;
当,时,
原式
.
【点睛】
题目主要考查整式的混合运算,熟练掌握运算法则及完全平方公式和平方差公式是解题关键.
相关试卷
这是一份初中北京课改版第六章 整式的运算综合与测试测试题,共15页。试卷主要包含了下列计算正确的是,下列运算正确的是,若,,求的值是等内容,欢迎下载使用。
这是一份2020-2021学年第六章 整式的运算综合与测试随堂练习题,共18页。试卷主要包含了下列判断正确的是,下列说法正确的是,下列运算正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第六章 整式的运算综合与测试课后作业题,共17页。试卷主要包含了下列说法正确的是,下列关于整式的说法错误的是,下列计算正确的是,下列运算中正确的是,已知整数,下列叙述中,正确的是等内容,欢迎下载使用。