初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后复习题
展开这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后复习题,共19页。试卷主要包含了下列运算正确的是,下列各式中,计算结果为的是,观察下列各式等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列式子正确的( )
A.x﹣(y﹣z)=x﹣y﹣z
B.﹣(a﹣b)﹣(﹣c﹣d)=﹣a+b+c+d
C.x﹣2(z+y)=x﹣2y﹣2
D.﹣(x﹣y+z)=﹣x﹣y﹣z
2、如图,在边长为的正方形中,剪去一个边长为a的小正方形,将余下部分对称剪开,拼成一个平行四边形,根据两个图形阴影部分面积的关系,可以得到一个关于x,a的恒等式是( ).
A. B.
C. D.
3、下列计算正确的是( )
A. B.
C. D.
4、下列运算正确的是( )
A. B.
C. D.
5、下列各式中,计算结果为的是( )
A. B.
C. D.
6、下列运算正确的是( )
A. B. C. D.
7、如图所示的运算程序中,若开始输入x的值为2,则第2022次输出的结果是( )
A.-6 B.-3 C.-8 D.-2
8、若x2+mxy+25y2是一个完全平方式,那么m的值是( )
A.±10 B.-5 C.5 D.±5
9、观察下列各式:(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72;….请你根据观察得到的规律判断下列各式中正确的是( )
A.1005+1006+1007+…+3016=20112
B.1005+1006+1007+…+3017=20112
C.1006+1007+1008+…+3016=20112
D.1006+1008+1009+…+3017=20112
10、下列数字的排列:2,12,36,80,那么下一个数是( )
A.100 B.125 C.150 D.175
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、单项式22a6b3的系数是_____.
2、已知,则_______.
3、观察下面三行数:
﹣2、4、﹣8、16、﹣32、64…①
﹣5、1、﹣11、13、﹣35、61…②
﹣、1、﹣2、4、﹣8、16…③
取每行数的第10个数,则这三个数的和为________.
4、如表,从左到右在每个小格中都填入一个整数、使得任意三个相邻格子所填整数之和都相等,则第2021个格子中的整数是 _____.
﹣1 | a | b | c | 3 | b |
|
| ﹣5 |
| … |
5、计算__________.
三、解答题(5小题,每小题10分,共计50分)
1、(1)在数学中,完全平方公式是比较熟悉的,例如.若,,则______;
(2)如图1,线段AB上有一点C,以AC、CB为直角边在上方分别作等腰直角三角形ACE和CBF,已知,,的面积为6,设,,求与的面积之和;
(3)如图2,两个正方形ABCD和EFGH重叠放置,两条边的交点分别为M、N.AB的延长线与FG交于点Q,CB的延长线与EF交于点P,已知,,阴影部分的两个正方形EPBM和BQGN的面积之和为60,则正方形ABCD和EFGH的重叠部分的长方形BMHN的面积为______.
2、化简求值 ,其中,
3、观察下面三行数,回答问题:
,4,,16,,64…
1,7,,19,,67…
2,5,,11,,35…
(1)第①行数按什么规律排列,请用含n(n为正整数)的式子表示;
(2)第②③行数与第①行数存在一定关系,计算这两行数的差(用含n的式子表示).
4、已知:A=2a2+3ab﹣2a﹣1,B=a2+ab﹣1
(1)求A﹣2B的值;
(2)a=﹣3,b=时,求A﹣2B的值.
5、在数学习题课中,同学们为了求的值,进行了如下探索:
(1)某同学设计如图1所示的几何图形,将一个面积为1的长方形纸片对折.
(I)求图1中部分④的面积;
(II)请你利用图形求的值;
(III)受此启发,请求出的值;
(2)请你利用备用图,再设计一个能求与的值的几何图形.
---------参考答案-----------
一、单选题
1、B
【分析】
根据去括号法则逐项计算,然后判断即可.
【详解】
解:A. x﹣(y﹣z)=x﹣y+z,原选项不正确,不符合题意;
B. ﹣(a﹣b)﹣(﹣c﹣d)=﹣a+b+c+d,原选项正确,符合题意;
C. x﹣2(z+y)=x﹣2y﹣2 z,原选项不正确,不符合题意;
D. ﹣(x﹣y+z)=﹣x+y﹣z,原选项不正确,不符合题意;
故选:B.
【点睛】
本题考查了去括号法则,解题关键是熟记去括号法则,准确进行去括号.
2、C
【分析】
根据公式分别计算两个图形的面积,由此得到答案.
【详解】
解:正方形中阴影部分的面积为,
平行四边形的面积为x(x+2a),
由此得到一个x,a的恒等式是,
故选:C.
【点睛】
此题考查了平方差公式与几何图形,正确掌握图形面积的计算方法是解题的关键.
3、C
【分析】
由合并同类项可判断A,由积的乘方运算可判断B,C,由同底数幂的除法运算可判断D,从而可得答案.
【详解】
解:不是同类项,不能合并,故A不符合题意;
故B不符合题意;
,运算正确,故C符合题意;
故D不符合题意;
故选C
【点睛】
本题考查的是合并同类项,积的乘方运算,同底数幂的除法运算,掌握以上基础运算是解本题的关键.
4、B
【分析】
根据幂的运算和乘法公式逐项判断即可.
【详解】
解:A. ,原选项不正确,不符合题意;
B. ,原选项正确,符合题意;
C. ,原选项不正确,不符合题意;
D. ,原选项不正确,不符合题意;
故选:B.
【点睛】
本题考查了幂的运算和乘法公式,解题关键是熟记幂的运算法则和乘法公式.
5、B
【分析】
根据幂的运算法则即可求解.
【详解】
A. =,故错误;
B. =,正确;
C. 不能计算,故错误;
D. =,故错误;
故选B.
【点睛】
此题主要考查幂的运算,解题的关键是熟知其运算法则.
6、D
【分析】
根据整式的运算法则逐项检验即可.
【详解】
解:A、b2与b3不是同类项,不能合并,故该选项不符合题意;
B、,原计算错误,故该选项不符合题意;
C、,原计算错误,故该选项不符合题意;
D、,正确,故该选项符合题意;
故选:D.
【点睛】
本题考查了合并同类项,同底数幂的乘法除法,积的乘方等整式的相关运算法则,能够熟记基本的运算法则并灵活运用,正确计算是解决本题的关键.
7、B
【分析】
先分别求出第1-8次输出的结果,再归纳类推出一般规律,由此即可得出答案.
【详解】
解:第1次输出的结果为;
第2次输出的结果为;
第3次输出的结果为;
第4次输出的结果为;
第5次输出的结果为;
第6次输出的结果为;
第7次输出的结果为;
第8次输出的结果为,
…,
由此可知,从第2次开始,输出的结果是以−4,−2,−1,−6,−3,−8循环往复的,
因为,
所以第2022次输出的结果与第6次输出的结果相同,即为−3,
故选:B.
【点睛】
本题考查了程序流程图与代数式求值,正确归纳类推出一般规律是解题关键.
8、A
【分析】
先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.
【详解】
解:∵x2+mxy+25y2=x2+mxy+(5y)2,
∴mxy=±2x×5y,
解得:m=±10.
故选:A.
【点睛】
本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键.
9、C
【分析】
根据已知条件找出数字规律:第n个等式是n+(n+1)+(n+2)+…+(n+2n-2)=(2n-1)2,其中n为正整数,依次判断各个式子即可得出结果.
【详解】
解:根据(1)1=12;
(2)2+3+4=32;
(3)3+4+5+6+7=52;
(4)4+5+6+7+8+9+10=7×7
可得出:n+(n+1)+(n+2)+…+(n+2n-2)=(2n-1)2,
∴1005+1006+1007+…+3013=20092
1006+1007+1008+…+3016=20112 ,
故选C.
【点睛】
本题主要考查了数字类的规律探索,解题的关键在于能够根据题意找到规律求解.
10、C
【分析】
由2=1+1=13+12,12=8+4=23+22,36=27+9=33+32,80=64+16=43+42,可得第n个数为n3+n2,由此求解即可.
【详解】
解:∵2=1+1=13+12,
12=8+4=23+22,
36=27+9=33+32,
80=64+16=43+42,
∴下一个数是53+52=125+25=150.
(第n个数为n3+n2).
故选C.
【点睛】
本题主要考查了数字类的规律探索,根据题意找到规律是解题的关键.
二、填空题
1、22
【分析】
根据单项式系数的定义直接可得出答案
【详解】
解:单项式的系数是 22 .
故答案为22.
【点睛】
本题考查的知识点是单项式的系数,单项式中的数字因数叫做这个单项式的系数,要注意数字因数前面的符号要带着.
2、32
【分析】
根据幂的乘方进行解答即可.
【详解】
解:由2x+5y-3=2可得:2x+5y=5,
所以4x•32y=22x+5y=25=32,
故答案为:32.
【点睛】
本题考查幂的乘方,关键是根据幂的乘方法则解答.
3、
【分析】
观察第①行数排列的规律,发现第①行第个数是,第②行数是第①行数减去,第③行数是第①行数乘以,进而可得每行数的第个数的和.
【详解】
解:根据三行数的规律可知:
第①行第个数是,
第②行数是第①行数减去,
第③行数是第①行数乘以,
则每行数的第个数的和为:
=
=
=,
故答案为:.
【点睛】
本题考查了数字的变化规律,根据题意得出每列数字的变化规律是解本题的关键.
4、3
【分析】
根据三个相邻格子的整数的和相等列式求出a=3、c=﹣1,再根据第9个数是﹣5可得b=﹣5,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.
【详解】
解:∵任意三个相邻格子中所填整数之和都相等,
∴﹣1+a+b=a+b+c,
解得:c=﹣1,
a+b+c=b+c+3,
解得:a=3,
∴数据从左到右依次为﹣1、3、b、﹣1、3、b,
∴第9个数与第三个数相同,即b=﹣5,
∴每3个数“﹣1、3、﹣5”为一个循环组依次循环,
∵2021÷3=673……2,
∴第221个格子中的整数与第2个格子中的数相同,为3.
故答案为:3
【点睛】
本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键.
5、
【分析】
根据单项式相乘的运算法则求解即可.
【详解】
解:.
故答案为:.
【点睛】
此题考查了单项式相乘,解题的关键是熟练掌握单项式相乘的运算法则.
三、解答题
1、(1)13;(2);(3)22.
【解析】
【分析】
(1)根据完全平方公式变形得出即可;
(2)设,,根据等腰直角三角形ACE和CBF,得出AC=EC=a,BC=CF=b,根据,得出,,利用公式变形得出即可;
(3)设BM=m,BN=n,根据S矩形BNHM=mn,S正方形EPBM+S正方形BQGN=m2+n2=60,根据四边形ABCD为正方形,AB=BC,列等式m+7=n+3,得出n-m=4,根据公式变形得出即可.
【详解】
解:(1),
故答案为:13;
(2)设,,
∵等腰直角三角形ACE和CBF,
∴AC=EC=a,BC=CF=b,
∵,
∴,
∵S△ACF=,
∴,
S△ACE+S△CBF=,
∵,
∴S△ACE+S△CBF=;
(3)设BM=m,BN=n,
∵S矩形BNHM=mn,S正方形EPBM+S正方形BQGN=m2+n2=60,四边形ABCD为正方形,AB=BC,
∴m+7=n+3,
∴n-m=4,
∵,
∴,
∴S矩形BNHM=mn=22.
故答案为:22.
【点睛】
本题考查完全平方公式变形应用,掌握公式变形应用的方法,数形结合,识别出题者意图是解题的突破口.
2、+y,-17
【解析】
【分析】
根据整式加减的运算法则“一般地,几个整式相加减,如果有括号就先去括号,然后合并同类项”进行解答即可得.
【详解】
解:原式=
=,
当,时,.
【点睛】
本题考查了整式的化简求值,解题的关键是掌握整式加减的运算法则.
3、(1);(2)或
【解析】
【分析】
(1)先确定符号,奇数为负,偶数为正,表示为,再确定数值,
2=,4=,8=,把符号与数值组合即为答案;
(2)第②行比第①行各数多3,第③行比第①行各数一半多3,计算即可.
【详解】
(1),4,,16,,64…
奇数为负,偶数为正,符号可表示为,
∵2=,4=,8=,…
∴规律排是;
(2)∵第②行比第①行各数多3,
∴第②行的规律是+3;
∵第③行是比第①行各数一半多3,
∴第③行的规律是+3即+3;
∴这两行的差为+3-(+3)或 +3-+3),
整理,得或.
【点睛】
本题考查了有理数中的规律,学会从符号,底数,指数角度寻找与序号的关系是解题的关键.
4、(1)ab﹣2a+1;(2)5
【解析】
【分析】
(1)将已知整式代入,然后去括号,合并同类项进行化简;
(2)将已知字母的值代入(1)中的化简结果,从而求值.
【详解】
解:(1)∵A=2a2+3ab﹣2a﹣1,B=a2+ab﹣1,
∴A﹣2B=2a2+3ab﹣2a﹣1-2(a2+ab﹣1)
=2a2+3ab﹣2a﹣1﹣2a2-2ab+2
=ab﹣2a+1;
(2)当a=﹣3,b=时,
原式=.
【点睛】
本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.
5、(1)(I);(II);(III);(2)见解析.
【解析】
【分析】
(1)(ⅰ)根据题目中的图形和题意,计算出部分④的面积即可;(ⅱ)根据图形,可以所求式子的值即可;(ⅲ)根据(2)中的结果,直接写出所求式子的值即可;
(2)将长方形分成两个全等的三角形,然后继续分割两个小一点的全等三角形,依次继续分割即可即可解答(答案不唯一).
【详解】
解:(1)(ⅰ)由题意可得,部分④的面积是;
(ⅱ)由题意可得:;
(ⅲ)根据(2)中的结果,可推到出:=;
(2)可设计如图所示:
(答案不唯一,符合题意即可).
【点睛】
本题主要考查了数字的变化规律、有理数的混合运算等知识点,明确题意并灵活利用数形结合的思想是解答本题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后测评,共18页。试卷主要包含了用“※”定义一种新运算,下列计算正确的是,把式子去括号后正确的是等内容,欢迎下载使用。
这是一份2021学年第六章 整式的运算综合与测试随堂练习题,共16页。试卷主要包含了下列运算正确的是,下面说法正确的是,下列计算正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后测评,共19页。试卷主要包含了下列说法正确的是,下列式子正确的等内容,欢迎下载使用。