终身会员
搜索
    上传资料 赚现金

    2022年最新京改版七年级数学下册第七章观察、猜想与证明定向测试练习题(名师精选)

    立即下载
    加入资料篮
    2022年最新京改版七年级数学下册第七章观察、猜想与证明定向测试练习题(名师精选)第1页
    2022年最新京改版七年级数学下册第七章观察、猜想与证明定向测试练习题(名师精选)第2页
    2022年最新京改版七年级数学下册第七章观察、猜想与证明定向测试练习题(名师精选)第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版七年级下册第七章 观察、猜想与证明综合与测试精练

    展开

    这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试精练,共18页。试卷主要包含了如图,不能推出a∥b的条件是等内容,欢迎下载使用。
    京改版七年级数学下册第七章观察、猜想与证明定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、一副直角三角板如图放置,点CFD的延长线上,ABCF,∠F=∠ACB=90°,∠A=60°,则∠DBC的度数为( )A.45° B.25° C.15° D.20°2、一副三角板摆放如图所示,斜边FD与直角边AC相交于点E,点D在直角边BC上,且FDAB,∠B=30°,则∠ADB的度数是(  )A.95° B.105° C.115° D.125°3、下列说法中,真命题的个数为(      ①两条平行线被第三条直线所截,同位角相等;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行;③过一点有且只有一条直线与这条直线平行;④点到直线的距离是这一点到直线的垂线段;A.1个 B.2个 C.3个 D.4个4、下列各图中,∠1与∠2是对顶角的是(      A.  B. C.  D.5、如图,直线ABCD相交于点O,若∠AOC=125°,则∠BOD等于(  )
    A.55° B.125° C.115° D.65°6、如图,直线ab被直线c所截,下列条件不能判定直线ab平行的是(  )A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°7、如图,点在直线上,,若,则的大小为(    A.30° B.40° C.50° D.60°8、如图,不能推出ab的条件是(  )A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°9、如图,∠1=∠2,∠3=25°,则∠4等于(    A.165° B.155° C.145° D.135°10、若∠α=73°30',则∠α的补角的度数是(  )A.16°30' B.17°30' C.106°30' D.107°30'第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、一个角的余角是44°,这个角的补角是 _____.2、如图,O是直线AB上一点,已知∠1=36°,OD平分∠BOC,则∠AOD=_____.3、已知互为补角,且,则______.4、如图,直线ABCD相交于O,∠COE是直角,∠1=57°,则∠2=_____.
     5、已知∠A=38°24',则∠A的补角的大小是____.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,直线相交于点平分,若,求的度数.2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)3、已知:如图,中,点分别在上,于点(1)求证:(2)若平分,求的度数.4、已知:锐角∠AOB(1)若∠AOB=65°,则∠AOB的余角的度数为________度.(2)若∠AOB=53°17ʹ,则∠AOB的补角的度数为________.(3)若∠AOB=31°12ʹ,计算:AOB=___________.(4)若∠AOB=20°21ʹ,计算:3∠AOB5、完成下面的证明如图,点BAG上,AGCDCF平分∠BCD,∠ABE=∠FCBBEAFE求证:∠F=90°.证明:∵AGCD(已知)∴∠ABC=∠BCD(____)∵∠ABE=∠FCB(已知)∴∠ABC﹣∠ABE=∠BCD﹣∠FCB即∠EBC=∠FCDCF平分∠BCD(已知)∴∠BCF=∠FCD(____)∴____=∠BCF(等量代换)BECF(____)∴____=∠F(____)BEAF(已知)∴____=90°(____)∴∠F=90°. ---------参考答案-----------一、单选题1、C【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】解:由题意可得:∠EDF=45°,∠ABC=30°,ABCF∴∠ABD=∠EDF=45°,∴∠DBC=45°-30°=15°.故选:C【点睛】此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键.2、B【分析】由题意可知∠ADF=45°,则由平行线的性质可得∠B+∠BDF=180°,求得∠BDF=150°,从而可求∠ADB的度数.【详解】解:由题意得∠ADF=45°,,∠B=30°,∴∠B+∠BDF=180°,∴∠BDF=180°﹣∠B=150°,∴∠ADB=∠BDF﹣∠ADF=105°.故选:B【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同旁内角互补.3、B【分析】根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可【详解】①两条平行线被第三条直线所截,同位角相等,故①是真命题;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故②是真命题;③在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故③不是真命题, ④点到直线的距离是这一点到直线的垂线段的长度,故④不是真命题,故真命题是①②,故选B【点睛】本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键.4、C【分析】根据对顶角的定义作出判断即可.【详解】解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是.
    故选C.【点睛】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.5、B【分析】根据对顶角相等即可求解.【详解】解:∵直线ABCD相交于点O,∠AOC=125°,∴∠BOD等于125°.故选B.【点睛】本题主要考查了对顶角的性质,熟知对顶角相等的性质是解题的关键.6、D【分析】同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.【详解】解:(同位角相等,两直线平行),故A不符合题意; ∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意; (同位角相等,两直线平行)故C不符合题意; ∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,所以不能判定 故D符合题意;故选D【点睛】本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.7、D【分析】根据补角的定义求得∠BOC的度数,再根据余角的定义求得∠BOD的度数.【详解】解:∵∴∠BOC=180°-150°=30°,,即∠COD=90°,∴∠BOD=90°-30°=60°,故选:D【点睛】本题考查了补角和余角的计算,熟练掌握补角和余角的定义是解题的关键.8、B【分析】根据平行线的判定方法,逐项判断即可.【详解】解:是一对内错角,当时,可判断,故不符合题意;是邻补角,当时,不能判定,故符合题意;是一对同位角,当时,可判断,故不合题意;是一对同旁内角,当时,可判断,故不合题意;故选B.【点睛】本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.9、B【分析】设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.【详解】解:设∠4的补角为,如下图所示:
     ∠1=∠2,故选:B.【点睛】本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.10、C【分析】根据补角的定义可知,用180°﹣73°30'即可,【详解】解:∠α的补角的度数是180°﹣73°30'=106°30′.故选:C.【点睛】本题考查角的度量及补角的定义,解题关键是掌握补角的定义.二、填空题1、134°【分析】直接利用互为余角的定义得出这个角的度数,再利用互为补角的定义得出答案.【详解】解:∵一个角的余角是44°,∴这个角的度数是:90°﹣44°=46°,∴这个角的补角是:180°﹣46°=134°.故答案为:134°【点睛】本题主要考查了余角和补角的性质,熟练掌握互为余角的两角的和为90°,互为余角的两角的和为180°是解题的关键.2、108°【分析】首先根据邻补角的定义得到∠BOC,然后由角平分线的定义求得∠COD即可.【详解】解:∵∠1=36°,∴∠COB=180°-36°=144°,OD平分∠BOC∴∠COD=BOC=×144°=72°,∴∠AOD=∠1+∠COD=36°+72°=108°.故答案为:108°.【点睛】本题主要考查角平分线及邻补角,角的和差,熟练掌握邻补角及角平分线的定义是解题的关键.3、【分析】根据题意可得,即可求解.【详解】解:∵互为补角,故答案为:【点睛】本题主要考查了补角的定义,熟练掌握互补的两角的和为 是解题的关键.4、33°【分析】由题意直接根据∠2=180°﹣∠COE﹣∠1,进行计算即可得出答案.【详解】解:由题意得:∠2=180°﹣∠COE﹣∠1=180°﹣90°﹣57°=33°.故答案为:33°.【点睛】本题考查余角和补角的知识,属于基础题,注意数形结合思维分析的运用.5、141°36′【分析】根据补角的定义即可求解.【详解】解:∠A的补角 =180°- 38°24'= 141°36′ .故答案为:141°36′【点睛】本题考查了补角的定义,熟知补角的定义“如果两个角的和是180°,则这两个角互为补角”是解题关键.三、解答题1、【解析】【分析】先根据平角的定义和可得,再根据角平分线的定义可得,然后根据对顶角相等即可得.【详解】解:平分由对顶角相等得:【点睛】本题考查了对顶角相等、角平分线的定义等知识点,熟练掌握角平分线的定义是解题关键.2、(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行;【解析】【分析】(1)根据两直线被第3条直线所截,确定∠2,∠3的位置为内错角,然后再判断直线平行即可;(2)根据两直线被第3条直线所截,确定∠2,∠5的位置为同位角,然后再判断直线平行即可;(3)根据两直线被第3条直线所截,确定∠2,∠1的位置为同旁内角,然后再判断直线平行即可;(4)根据两直线被第3条直线所截,确定∠5,∠3的位置为内错角,然后再判断直线平行即可.【详解】(1)如果∠2=∠3,那么EF∥DC.(内错角相等,两直线平行);(2)如果∠2=∠5,那么EF∥AB.(同位角相等,两直线平行);(3)如果∠2+∠1=180°,那么AD∥BC.(同旁内角互补,两直线平行);(4)如果∠5=∠3,那么AB∥CD.(内错角相等,两直线平行.故答案为:(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行.【点睛】本题考查平行线的判定,角的位置关系识别,掌握三线八角的两角位置关系,直线平行的判定定理是解题关键.3、(1)见解析;(2)72°【解析】【分析】(1)等量代换得出∠3=∠DFE,平行线的判定得出EF//AB,可以推出∠ADE=∠B,即可判断结论;(2)由平分线的定义得出∠ADE=∠EDC=∠B,由平角的定义列出关于∠5+∠ADE+∠EDC=180°,求出∠B的度数,即可得出∠ADC的度数,由EF//AB即可求出∠2的度数.【详解】解:(1)∵,∠2+∠DFE=180°,∴∠3=∠DFEEF//AB∴∠ADE=∠1,又∵∴∠ADE=∠B,DE//BC(2)∵平分∴∠ADE=∠EDCDE//BC∴∠ADE=∠B∴∠5+∠ADE+∠EDC=180°,解得:∴∠ADC=2∠B=72°,EF//AB∴∠2=∠ADC=180°-108°=72°,【点睛】本题考查了平行线的判定和性质、邻补角、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4、(1)25°;(2)126°43ʹ;(3)15°36ʹ;(4)61°3ʹ【解析】【分析】(1)根据余角的性质,即可求解;(2)根据补角的性质,即可求解;(3)用 乘以∠AOB,即可求解;(4)用3乘以∠AOB,即可求解.【详解】解:(1)∠AOB的余角的度数为 (2)   (3)(4)3∠AOB=3×20°21ʹ=60°63ʹ=61°3ʹ【点睛】本题主要考查了余角和补角,角的倍分关系,熟练掌握余角和补角的性质,角的倍分关系是解题的关键.5、两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义【解析】【分析】根据平行线的性质得到∠ABC=∠BCD,再根据角平分线的定义进而得到∠EBC=∠BCF,即可判定BE∥CF,根据平行线的性质得出∠BEF=∠F,再根据垂直的定义即可得解.【详解】证明:∵AG∥CD(已知),∴∠ABC=∠BCD(两直线平行,内错角相等),∵∠ABE=∠FCB(已知),∴∠ABC﹣∠ABE=∠BCD﹣∠FCB即∠EBC=∠FCDCF平分∠BCD(已知),∴∠BCF=∠FCD(角平分线的定义),∴∠EBC=∠BCF(等量代换),BE∥CF(内错角相等,两直线平行),∴∠BEF=∠F(两直线平行,内错角相等),BEAF(已知),∴∠BEF=90°(垂直的定义),∴∠F=90°.故答案为:两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义.【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,垂直的定义,熟练掌握相关知识是解题的关键. 

    相关试卷

    数学七年级下册第七章 观察、猜想与证明综合与测试复习练习题:

    这是一份数学七年级下册第七章 观察、猜想与证明综合与测试复习练习题,共23页。试卷主要包含了命题等内容,欢迎下载使用。

    北京课改版七年级下册第七章 观察、猜想与证明综合与测试精练:

    这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试精练,共21页。试卷主要包含了如图,直线AB,如图,能判定AB∥CD的条件是,直线等内容,欢迎下载使用。

    北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后练习题:

    这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后练习题,共25页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map