数学七年级下册第七章 观察、猜想与证明综合与测试当堂检测题
展开
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试当堂检测题,共19页。试卷主要包含了下列说法中,真命题的个数为,下列说法中,假命题的个数为等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,下列条件能判断直线l1//l2的有( )
①;②;③;④;⑤
A.1个B.2个C.3个D.4个
2、如图,∠1=35°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为 ( )
A.125°B.115°C.105°D.95°
3、可以用来说明命题“x2<y2,则x<y”是假命题的反例是( )
A.x=4,y=3B.x=﹣1,y=2C.x=﹣2,y=1D.x=2,y=﹣3
4、如图,∠1=∠2,∠3=25°,则∠4等于( )
A.165°B.155°C.145°D.135°
5、如图,直线a∥b,Rt△ABC的直角顶点C在直线b上.若∠1=50°,则∠2的度数为( )
A.30°B.40°C.50°D.60°
6、下列说法中,真命题的个数为( )
①两条平行线被第三条直线所截,同位角相等;
②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行;
③过一点有且只有一条直线与这条直线平行;
④点到直线的距离是这一点到直线的垂线段;
A.1个B.2个C.3个D.4个
7、如图,直线a∥b,直线AB⊥AC,若∠1=52°,则∠2的度数是( )
A.38°B.42°C.48°D.52°
8、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为( )
A.西偏北50°B.北偏西50°C.东偏北30°D.北偏东30°
9、下列说法中,假命题的个数为( )
①两条直线被第三条直线所截,同位角相等
②如果两条直线都与第三条直线垂直,那么这两条直线互相平行
③过一点有且只有一条直线与这条直线平行
④在同一平面内,过一点有且只有一条直线与已知直线垂直
A.1个B.2个C.3个D.4个
10、下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( )
A.1个B.2个C.3个D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知∠1与∠2互余,∠3与∠2互余,则∠1_____∠3.(填“>”,“=”或“<”)
2、如图,已知,CE平分,,则______°.
3、如图所示,,点B,O,D在同一直线上,若,则的度数为______.
4、若一个角的补角与这个角的余角之和为190°,则这个角的度数为_____度.
5、如图,∠AOB=180°,OD是∠BOC的平分线,OE是∠AOC的平分线,则图中与∠COD互补的角是 _____.
三、解答题(5小题,每小题10分,共计50分)
1、已知:如图,直线相交于点,平分,若,求的度数.
2、如图,已知∠AOB=90°,∠COD=90°,OE为∠BOD的平分线,∠BOE=17°,求∠AOC的度数.
3、如图,已知点O是直线AB上一点,射线OM平分.
(1)若,则______度;
(2)若,求的度数.
4、如图所示,点、分别在、上,、均与相交,,,求证:.
5、如图,直线AB,CD,EF相交于点O,OG⊥CD.
(1)已知∠AOC=38°12',求∠BOG的度数;
(2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.
---------参考答案-----------
一、单选题
1、D
【分析】
根据平行线的判定定理进行依次判断即可.
【详解】
①∵∠1,∠3互为内错角,∠1=∠3,∴;
②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴;
③∠4,∠5互为同位角,∠4=∠5,∴;
④∠2,∠3没有位置关系,故不能证明 ,
⑤,,
∴∠1=∠3,
∴,
故选D.
【点睛】
此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.
2、A
【分析】
利用互余角的概念与邻补角的概念解答即可.
【详解】
解:∵∠1=35°,∠AOC=90°,
∴∠BOC=∠AOC−∠1=55°.
∵点B,O,D在同一条直线上,
∴∠2=180°−∠BOC=125°.
故选:A.
【点睛】
本题主要考查了角的和差运算,互余角的关系以及邻补角的关系.准确使用邻补角的关系是解题的关键.
3、D
【分析】
根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.
【详解】
解:当x=2,y=﹣3时,x2<y2,但x>y,
故选:D.
【点睛】
此题考查的是命题与定理,要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法.
4、B
【分析】
设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.
【详解】
解:设∠4的补角为,如下图所示:
∠1=∠2,
,
,
.
故选:B.
【点睛】
本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.
5、B
【分析】
由平角的定义可求得∠BCD的度数,再利用平行线的性质即可求得∠2的度数.
【详解】
解:如图所示:
∵∠1=50°,∠ACB=90°,
∴∠BCD=180°﹣∠1﹣∠BCD=40°,
∵a∥b,
∴∠2=∠BCD=40°.
故选:B.
【点睛】
本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.
6、B
【分析】
根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可
【详解】
①两条平行线被第三条直线所截,同位角相等,故①是真命题;
②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故②是真命题;
③在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故③不是真命题,
④点到直线的距离是这一点到直线的垂线段的长度,故④不是真命题,
故真命题是①②,
故选B
【点睛】
本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键.
7、A
【分析】
利用直角三角形的性质先求出∠B,再利用平行线的性质求出∠2.
【详解】
解:∵AB⊥AC,∠1=52°,
∴∠B=90°﹣∠1
=90°﹣52°
=38°
∵a∥b,
∴∠2=∠B=38°.
故选:A.
【点睛】
本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.
8、D
【分析】
由,证明,再利用角的和差求解 从而可得答案.
【详解】
解:如图,标注字母, ,
∴,
此时的航行方向为北偏东30°,
故选:D.
【点睛】
本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.
9、C
【分析】
根据平行线的判定与性质、垂直的性质逐个判断即可得.
【详解】
解:①两条平行线被第三条直线所截,同位角相等,则原说法错误,是假命题;
②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,则原说法错误,是假命题;
③过直线外一点有且只有一条直线与这条直线平行,则原说法错误,是假命题;
④在同一平面内,过一点有且只有一条直线与已知直线垂直,则原说法正确,是真命题;
综上,假命题的个数是3个,
故选:C.
【点睛】
本题考查了平行线的判定与性质、垂直的性质,熟练掌握各性质是解题关键.
10、C
【分析】
根据平行线的性质与判定可以判断①②④,根据垂线段最短可以判断③.
【详解】
解:①平面内,垂直于同一条直线的两直线平行,是真命题;
②经过直线外一点,有且只有一条直线与这条直线平行,是真命题;
③垂线段最短,是真命题;
④两直线平行,同旁内角互补,是假命题,
∴真命题有3个,
故选C.
【点睛】
本题主要考查了判断命题真假,熟知相关知识是解题的关键.
二、填空题
1、=
【分析】
根据等(同)角的余角相等解答即可.
【详解】
解:∵∠1与∠2互余,∠3与∠2互余,
∴∠1=∠3,
故答案为:=.
【点睛】
本题考查余角,熟知同(等)角的余角相等是解答的关键.
2、65
【分析】
由平行线的性质先求解再利用角平分线的定义可得答案.
【详解】
解: , ,
CE平分,
故答案为:
【点睛】
本题考查的是角平分线的定义,平行线的性质,掌握“两直线平行,同旁内角互补”是解本题的关键.
3、116°
【分析】
由图示可得,∠1与∠BOC互余,结合已知可求∠BOC,又因为∠2与∠COB互补,即可求出∠2的度数.
【详解】
解:∵,∠AOC=90°,
∴∠BOC=64°,
∵∠2+∠BOC=180°,
∴∠2=116°.
故答案为:116°.
【点睛】
此题考查了余角和补角的知识,属于基础题,关键是掌握互余的两角之和为90°,互补的两角之和为180°.
4、40
【分析】
首先设这个角为x°,则它的补角为(180-x)°,它的余角为(90-x)°,由题意得:这个角的补角的度数+它的余角的度数=190,根据等量关系列出方程,再解即可.
【详解】
解:设这个角为x°,则它的补角为(180-x)°,它的余角为(90-x)°,由题意得:
(180-x)+(90-x)=190,
解得:x=40,
故答案为: 40.
【点睛】
本题考查余角和补角,关键是掌握如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.
5、∠AOD
【分析】
根据角平分线的性质,可得∠AOE=∠COE,∠COD=∠BOD,再根据补角的定义求解即可.
【详解】
解:∵OD是∠BOC的平分线,
∴∠COD=∠BOD,
∵∠BOD+∠AOD=180°,
∴∠COD+∠AOD=180°,
∴与∠COD互补的是∠AOD.
故答案为:∠AOD.
【点睛】
本题考查了补角的定义,角平分线的定义等知识,解答本题的关键是理解补角的定义,掌握角平分线的性质.
三、解答题
1、
【解析】
【分析】
先根据平角的定义和可得,再根据角平分线的定义可得,然后根据对顶角相等即可得.
【详解】
解:,
,
平分,
,
由对顶角相等得:.
【点睛】
本题考查了对顶角相等、角平分线的定义等知识点,熟练掌握角平分线的定义是解题关键.
2、146°
【解析】
【分析】
由OE是∠BOD的平分线,∠BOE=17°,可知∠BOD;又由∠COD=90°,∠AOB=90°,所以根据圆周角360°可计算∠AOC.
【详解】
解:∵OE为∠BOD的平分线,
∴∠BOD=2∠BOE,
∵∠BOE=17°,
∴∠BOD=34°.
又∵∠AOB=∠COD=90°,∠AOB+∠COD+∠AOC+∠BOD=360°,
∴∠AOC =360°-∠AOB-∠COD-∠BOD=360°-90°-90°-34°=146°.
【点睛】
本题主要考查角的比较与运算,涉及到余角、圆周角、角平分线的性质等知识点,找到相应等量关系是解此题的关键.
3、(1),(2)
【解析】
【分析】
(1)根据平角的定义可求;
(2)根据和,代入解方程求出即可.
【详解】
解:(1)∵,
∴,
故答案为:.
(2)∵OM平分,
∴,
∵,
∴,
∴,
∴.
【点睛】
本题考查了角平分线的有关计算,解题关键是准确识图,弄清角之间的数量关系.
4、证明见解析
【解析】
【分析】
由,证明,再证,最后根据对顶角相等,可得答案.
【详解】
证明:∵,
∴,
∴,
又∵,
∴,
∴,
∴,
∵,
∴.
【点睛】
本题主要考查了平行线的性质与判定,对顶角的性质,解题的关键在于能够熟练掌握相关知识进行求解.
5、(1)51°48′;(2)OG是∠EOB的平分线,理由见解析
【解析】
【分析】
(1)根据互为余角的意义和对顶角的性质,可得∠AOC=∠BOD=38°12′,进而求出∠BOG;
(2)求出∠EOG=∠BOG即可.
【详解】
解:(1)∵OG⊥CD.
∴∠GOC=∠GOD=90°,
∵∠AOC=∠BOD=38°12′,
∴∠BOG=90°﹣38°12′=51°48′,
(2)OG是∠EOB的平分线,
理由:
∵OC是∠AOE的平分线,
∴∠AOC=∠COE=∠DOF=∠BOD,
∵∠COE+∠EOG=∠BOG+∠BOD=90°,
∴∠EOG=∠BOG,
即:OG平分∠BOE.
【点睛】
本题主要考查角平分线的定义及余角,熟练掌握角平分线的定义及余角是解题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试测试题,共22页。试卷主要包含了下列命题是假命题的有,若的补角是150°,则的余角是,如图,直线AB,下列命题中,真命题是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练,共22页。试卷主要包含了下列语句中,错误的个数是,如图,下列命题中,真命题是等内容,欢迎下载使用。
这是一份北京课改版第七章 观察、猜想与证明综合与测试当堂检测题,共24页。试卷主要包含了命题等内容,欢迎下载使用。