数学七年级下册第七章 观察、猜想与证明综合与测试当堂检测题
展开
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试当堂检测题,共20页。试卷主要包含了下列命题中,是真命题的是,若的补角是125°,则的余角是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图:O为直线AB上的一点,OC为一条射线,OD平分,OE平分,图中互余的角共有( )
A.1对B.2对C.4对D.6对
2、若一个角比它的余角大30°,则这个角等于( )
A.30°B.60°C.105°D.120°
3、如图,货轮O航行过程中,同时发现灯塔A和轮船B,灯塔A在货轮O北偏东40°的方向,∠AOE=∠BOW,则轮船B在货轮( )
A.西北方向B.北偏西60°C.北偏西50°D.北偏西40°
4、嘉淇在证明“平行于同一条直线的两条直线平行”时,给出了如下推理过程:
小明为保证嘉淇的推理更严谨,想在方框中“∴∠1=∠5”和“∴b∥c”之间作补充,下列说法正确的是( )
A.嘉淇的推理严谨,不需要补充
B.应补充∠2=∠5
C.应补充∠3+∠5=180°
D.应补充∠4=∠5
5、下列命题中,是真命题的是( )
A.同位角相等B.同角的余角相等
C.相等的角是对顶角D.有且只有一条直线与已知直线垂直
6、若的补角是125°,则的余角是( )
A.90°B.54°C.36°D.35°
7、如图,∠1=∠2,∠3=25°,则∠4等于( )
A.165°B.155°C.145°D.135°
8、一个角的余角比这个角的补角的一半小40°,则这个角为( )
A.50°B.60°C.70°D.80°
9、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )
A.40°B.36°C.44°D.100°
10、如图,直线AB、CD相交于点O,EO⊥AB于点O,∠EOC=35°,则∠AOD的度数为( )
A.55°B.125°C.65°D.135°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知AO⊥OC,OB⊥OD,∠COD=42°,则∠AOB=__________.
2、75°的余角是______.
3、填写推理理由
如图:EF∥AD,∠1=∠2,∠BAC=70°,把求∠AGD的过程填写完整.
证明:∵EF∥AD
∴∠2=________(______________)
又∵∠1=∠2
∴∠1=∠3________
∴AB∥________(____________)
∴∠BAC+________=180°(___________)
又∵∠BAC=70°
∴∠AGD=________
4、如图,已知∠BOA=90°,直线CD经过点O, 若∠BOD:∠AOC=5:2,则∠AOC=_______.
5、若∠α=53°18′,则∠α的补角为_____°.
三、解答题(5小题,每小题10分,共计50分)
1、已知直线AB和CD交于点O,∠AOC=α,∠BOE=90°,OF平分∠AOD.
(1)当α=30°时,则∠EOC=_________°;∠FOD=_________°.
(2)当α=60°时,射线OE′从OE开始以12°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求经过多少秒射线OE′与射线OF′第一次重合?
(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间为_________秒.
2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.
(1)如果∠2=∠3,那么____________.(____________,____________)
(2)如果∠2=∠5,那么____________.(____________,____________)
(3)如果∠2+∠1=180°,那么____________.(____________,____________)
(4)如果∠5=∠3,那么____________.(____________,____________)
3、已知如图,∠ABC=∠ADC,BF、DE分别是∠ABC、∠ADC的角平分线,∠1=∠2,那么CD与AB平行吗?写出推理过程.
4、如图,已知点O是直线AB上一点,射线OM平分.
(1)若,则______度;
(2)若,求的度数.
5、如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOC=76°;
(1)求∠DOE的度数;
(2)求∠BOF的度数.
---------参考答案-----------
一、单选题
1、C
【分析】
根据余角的定义求解即可.余角:如果两个角相加等于90°,那么这两个角互为余角.
【详解】
解:∵OD平分,OE平分,
∴,
又∵,即,
∴,,,,
∴互余的角共有4对.
故选:C.
【点睛】
此题考查了余角的定义,角平分线的概念等知识,解题的关键是熟练掌握余角的定义.余角:如果两个角相加等于90°,那么这两个角互为余角.
2、B
【分析】
设这个角为α,则它的余角为:90°-α,由“一个角比它的余角大30°”列方程解方程即可的解.
【详解】
解:设这个角为α,则它的余角为:90°-α,
由题意得,α-(90°-α)=30°,
解得:α=60°,
故选:B
【点睛】
本题考查了余角的定义和一元一次方程的应用,根据题意列出等量关系是解题的关键.
3、D
【分析】
根据题意得:∠AON=40°,再由等角的余角相等,可得∠BON=∠AON=40°,即可求解.
【详解】
解:根据题意得:∠AON=40°,
∵∠AOE=∠BOW,∠AON+∠AOE=90°,∠BON+∠BOW=90°,
∴∠BON=∠AON=40°,
∴轮船B在货轮的北偏西40°方向.
故选:D
【点睛】
本题主要考查了余角的性质,方位角,熟练掌握等角的余角相等是解题的关键.
4、D
【分析】
根据平行线的性质与判定、平行公理及推论解决此题.
【详解】
解:证明:作直线DF交直线a、b、c分别于点D、E、F,
∵a∥b,
∴∠1=∠4,
又∵a∥c,
∴∠1=∠5,
∴∠4=∠5.
∴b∥c.
∴应补充∠4=∠5.
故选:D.
【点睛】
本题主要考查平行线的性质与判定、平行公理及推论,熟练掌握平行线的性质与判定、平行公理及推论是解决本题的关键.
5、B
【分析】
利用平行线的性质、对顶角的性质、垂线的定义及互余的定义分别对每个选项进行判断后即可确定正确的选项.
【详解】
解:A、应该是两直线平行,同位角相等,则原命题是假命题,故本选项不符合题意;
B、同角的余角相等,是真命题,故本选项符合题意;
C、相等的角不一定是对顶角,则原命题是假命题,故本选项不符合题意;
D、应该是在同一平面内,过一点有且只有一条直线与已知直线垂直,则原命题是假命题,故本选项不符合题意;
故选:B.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质、垂线的定义及互补的定义等知识.
6、D
【分析】
根据题意,得=180°-125°,的余角是90°-(180°-125°)=125°-90°,选择即可.
【详解】
∵的补角是125°,
∴=180°-125°,
∴的余角是90°-(180°-125°)=125°-90°=35°,
故选D.
【点睛】
本题考查了补角,余角的计算,正确列出算式是解题的关键.
7、B
【分析】
设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.
【详解】
解:设∠4的补角为,如下图所示:
∠1=∠2,
,
,
.
故选:B.
【点睛】
本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.
8、D
【分析】
设这个角为x,根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,表示出它的余角和补角,列式解方程即可.
【详解】
设这个角为x,则它的余角为(90°-x),补角为(180°-x),
依题意得
解得x=80°
故选D.
【点睛】
本题考查了余角和补角的概念,是基础题,熟记概念并列出方程是解决本题的关键.
9、A
【分析】
首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.
【详解】
∵∠1=40°,∠2=40°,
∴∠1=∠2,
∴PQMN,
∴∠4=180°﹣∠3=40°,
故选:A.
【点睛】
本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
10、B
【分析】
先根据余角的定义求得,进而根据邻补角的定义求得即可.
【详解】
EO⊥AB,∠EOC=35°,
,
.
故选:B.
【点睛】
本题考查了垂直的定义,求一个角的余角、补角,掌握求一个角的余角与补角是解题的关键.
二、填空题
1、138°
【分析】
根据垂直的定义得到∠AOC=∠DOB=90°,由互余关系得到∠BOC=90°-∠COD=90°-42°=48°,即可求出∠AOB.
【详解】
解:∵AO⊥OC,OB⊥OD,
∴∠AOC=∠DOB=90°,
又∵∠COD=42°,
∴∠BOC=90°-∠COD=90°-42°=48°,
∴∠AOB=∠AOC+∠BOC=90°+48°=138°.
【点睛】
本题考查了余角的概念:若两个角的和为90°,那么这两个角互余.
2、15°
【分析】
根据和为的两个角互为余角计算即可.
【详解】
解:75°的余角是90°﹣75°=15°.
故答案为:15°.
【点睛】
此题主要考查余角的求解,解题的关键是熟知余角的定义与性质.
3、∠3 两直线平行,同位角相等 等量代换 DG 内错角相等,两直线平行 ∠AGD 两直线平行,同旁内角互补 110°
【分析】
根据平行线的判定与性质,求解即可.
【详解】
∵EF∥AD,
∴∠2=∠3,(两直线平行,同位角相等)
又∵∠1=∠2,
∴∠1=∠3,(等量代换)
∴AB∥DG.(内错角相等,两直线平行)
∴∠BAC+∠AGD=180°.(两直线平行,同旁内角互补)
又∵∠BAC=70°,
∴∠AGD=110°.
故答案是:∠3,两直线平行,同位角相等,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补,110°
【点睛】
此题考查了平行线的判定与性质,解题的关键是掌握平行线的判定方法与性质.
4、60°度
【分析】
根据一个角的余角与这个角的补角的关系,可得∠BOD与∠AOC的关系,从而列方程,可得答案.
【详解】
解:∵∠AOC+∠BOC=90°,∠BOD+∠BOC=180°,
∴∠BOD=∠AOC+90°,
∵∠BOD:∠AOC=5:2,
∴∠BOD=∠AOC,
∴∠AOC=∠AOC+90°,
解得∠AOC=60°,
故答案为:60°.
【点睛】
本题考查了角的计算,解一元一次方程的应用,掌握利用一个角的余角与这个角的补角的关系是解题关键.
5、126.7
【分析】
由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.
【详解】
解:∵∠A=53°18′,
∴∠A的补角=180°﹣53°18′=126°42′=126.7°.
故答案为:126.7.
【点睛】
本题考查求补角以及角的运算,熟练掌握互为补角的两个角的和等于180°以及角的运算法则是解题的关键.
三、解答题
1、(1)60,75;(2)秒;(3)3或12或21或30
【解析】
【分析】
(1)根据题意利用互余和互补的定义可得:∠EOC与∠FOD的度数.
(2)由题意先根据,得出∠EOF=150°,则射线OE'、OF'第一次重合时,其OE'运动的度数+OF'运动的度数=150,列式解出即可;
(3)根据题意分两种情况在直线OE的左边和右边,进而根据其夹角列4个方程可得时间.
【详解】
解:(1)∵∠BOE=90°,
∴∠AOE=90°,
∵∠AOC=α=30°,
∴∠EOC=90°-30°=60°,
∠AOD=180°-30°=150°,
∵OF平分∠AOD,
∴∠FOD=∠AOD=×150°=75°;
故答案为:60,75;
(2)当,.
设当射线与射线重合时至少需要t秒,
可得,解得:;
答:当射线与射线重合时至少需要秒;
(3)设射线转动的时间为t秒,
由题意得:或或或,
解得:或12或21或30.
答:射线转动的时间为3或12或21或30秒.
【点睛】
本题考查对顶角相等,邻补角互补的定义,角平分线的定义,角的计算,第三问有难度,熟记相关性质是解题的关键,注意要分情况讨论.
2、(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行;
【解析】
【分析】
(1)根据两直线被第3条直线所截,确定∠2,∠3的位置为内错角,然后再判断直线平行即可;
(2)根据两直线被第3条直线所截,确定∠2,∠5的位置为同位角,然后再判断直线平行即可;
(3)根据两直线被第3条直线所截,确定∠2,∠1的位置为同旁内角,然后再判断直线平行即可;
(4)根据两直线被第3条直线所截,确定∠5,∠3的位置为内错角,然后再判断直线平行即可.
【详解】
(1)如果∠2=∠3,那么EF∥DC.(内错角相等,两直线平行);
(2)如果∠2=∠5,那么EF∥AB.(同位角相等,两直线平行);
(3)如果∠2+∠1=180°,那么AD∥BC.(同旁内角互补,两直线平行);
(4)如果∠5=∠3,那么AB∥CD.(内错角相等,两直线平行.
故答案为:(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行.
【点睛】
本题考查平行线的判定,角的位置关系识别,掌握三线八角的两角位置关系,直线平行的判定定理是解题关键.
3、平行,见解析
【解析】
【分析】
先由角平分线的定义得到∠3=∠ADC,∠2=∠ABC,再由∠ABC=∠ADC,得到∠3=∠2,即可推出∠3=∠1,再由内错角相等,两直线平行即可证明.
【详解】
解:CD∥AB.理由如下:
∵BF、DE分别是∠ABC、∠ADC的角平分线,
∴∠3=∠ADC,∠2=∠ABC.
∵∠ABC=∠ADC,
∴∠3=∠2.
又∵∠1=∠2,
∴∠3=∠1.
∴CD∥AB(内错角相等,两直线平行).
【点睛】
本题主要考查了角平分线的定义,平行线的判定,解题的关键在于能够熟练掌握角平分线的定义与平行线的判定条件.
4、(1),(2)
【解析】
【分析】
(1)根据平角的定义可求;
(2)根据和,代入解方程求出即可.
【详解】
解:(1)∵,
∴,
故答案为:.
(2)∵OM平分,
∴,
∵,
∴,
∴,
∴.
【点睛】
本题考查了角平分线的有关计算,解题关键是准确识图,弄清角之间的数量关系.
5、(1)38°;(2)33°
【解析】
【分析】
(1)根据对顶角相等得出∠BOD,再根据角平分线计算∠DOE;
(2)求出∠DOE的补角∠COE,再用角平分线得出∠EOF,最后根据∠BOF=∠EOF-∠BOE求解.
【详解】
解:(1)∵∠AOC=76°,
∴∠BOD=∠AOC=76°,
∵OE平分∠BOD,
∴∠DOE=∠BOE=∠BOD=38°;
(2)∵∠DOE=38°,
∴∠COE=180°-∠DOE=142°,
∵OF平分∠COE,
∴∠EOF=∠COE=71°,
∴∠BOF=∠EOF-∠BOE=33°.
【点睛】
本题考查了角平分线的定义,以及对顶角的性质,理解角平分线的定义是关键.
已知:如图,b∥a,c∥a,
求证:b∥c;
证明:作直线DF交直线a、b、c分
别于点D、E、F,
∵a∥b,∴∠1=∠4,又∵a∥c,
∴∠1=∠5,
∴b∥c.
相关试卷
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试复习练习题,共23页。试卷主要包含了命题等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试精练,共21页。试卷主要包含了如图,直线AB,如图,能判定AB∥CD的条件是,直线等内容,欢迎下载使用。
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试精练,共20页。试卷主要包含了下列命题中是真命题的是,下列说法,下列命题是真命题的是等内容,欢迎下载使用。