初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练
展开
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练,共21页。试卷主要包含了下列命题等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题是真命题的是( )A.等角的余角相等 B.同位角相等C.互补的角一定是邻补角 D.两个锐角的和是钝角2、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为( )A.164°12' B.136°12' C.143°88' D.143°48'3、若的余角为,则的补角为( )A. B. C. D.4、一学员在广场上练习驾驶汽车,两次拐弯后行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) .A.第一次向左拐30°,第二次向右拐30°.B.第一次向右拐50°,第二次向左拐130°.C.第一次向左拐50°,第二次向左拐130°.D.第一次向左拐50°,第二次向右拐130°.5、如图,木工用图中的角尺画平行线的依据是( )A.垂直于同一条直线的两条直线平行B.平行于同一条直线的两条直线平行C.同位角相等,两直线平行D.经过直线外一点,有且只有一条直线与这条直线平行6、下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( )A.1个 B.2个 C.3个 D.4个7、一副三角板摆放如图所示,斜边FD与直角边AC相交于点E,点D在直角边BC上,且FDAB,∠B=30°,则∠ADB的度数是( )A.95° B.105° C.115° D.125°8、如图,点在直线上,,若,则的大小为( )A.30° B.40° C.50° D.60°9、如图,∠AOC和∠BOD都是直角,如果∠DOC=38°,那么∠AOB的度数是( )A.128° B.142° C.38° D.152°10、如图,若要使与平行,则绕点至少旋转的度数是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图将一条两边互相平行的纸带按如图折叠,若∠EFG+∠EGD=150°,则∠EGD=_____2、如图,已知AO⊥OC,OB⊥OD,∠COD=42°,则∠AOB=__________.3、如图,E在AD的延长线上,下列四个条件:①∠3=∠4;②∠C+∠ABC=180°;③∠A=∠CDE;④∠1=∠2,其中能判定AB∥CD的是________.(填序号)4、如图,O是直线AB上一点,已知∠1=36°,OD平分∠BOC,则∠AOD=_____.5、如图,OE是的平分线,交OA于点C,交OE于点D,,则的度数是______°.三、解答题(5小题,每小题10分,共计50分)1、如图,直线交于点,于点,且的度数是的4倍.(1)求的度数;(2)求的度数.2、如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°,(1)请判断AB与CD的位置关系并说明理由;(2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?并说明理由;(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.3、完成下列填空:已知:如图,,,CA平分;求证:.证明:∵(已知)∴________( )∵(已知)∴________( )又∵CA平分(已知)∴________( )∵(已知)∴_____________=30°( )4、如图所示,直线AB、CD相交于点O,∠1=65°,求∠2、∠3、∠4的度数5、如图,已知点O是直线AB上一点,射线OM平分.(1)若,则______度;(2)若,求的度数. ---------参考答案-----------一、单选题1、A【分析】由同角或等角的余角相等可判断A,由平行线的性质可判断B,由邻补角的定义可判断C,通过举反例,比如 可判断D,从而可得答案.【详解】解:等角的余角相等,正确,是真命题,故A符合题意,两直线平行,同位角相等,所以同位角相等是假命题,故B不符合题意;互补的角不一定是邻补角,所以互补的角一定是邻补角是假命题,故C不符合题意;两个锐角的和不一定是钝角,所以两个锐角的和是钝角是假命题,故D不符合题意;故选:A【点睛】本题考查的是等角的余角相等,平行线的性质,邻补角的定义,锐角与钝角的含义,掌握判断命题真假的方法是解题的关键.2、D【分析】根据邻补角及角度的运算可直接进行求解.【详解】解:由图可知:∠AOC+∠BOC=180°,∵∠COB=36°12',∴∠AOC=180°-∠BOC=143°48',故选D.【点睛】本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.3、C【分析】根据余角和补角的定义,先求出,再求出它的补角即可.【详解】解:∵的余角为,∴,的补角为,故选:C.【点睛】本题考查了余角和补角的运算,解题关键是明确两个角的和为90度,这两个角互为余角,两个角的和为180度,这两个角互为补角.4、A【分析】根据题意分析判断即可;【详解】由第一次向左拐30°,第二次向右拐30°可得转完两次后相当于在原方向上转过了,和原来方向相同,故A正确;第一次向右拐50°,第二次向左拐130°可得转完两次后相当于在原方向上左拐,故B错误;第一次向左拐50°,第二次向左拐130°可得转完两次后相当于在原方向上右拐,故C错误;第一次向左拐50°,第二次向右拐130°可得转完两次后相当于在原方向上右拐,故D错误;综上所述,符合条件的是A.故选:A.【点睛】本题主要考查了平行的判定与性质,准确分析判断是解题的关键.5、C【分析】由于角尺是一个直角,木工画线实质是在画一系列的直角,且这些直角有一边在同一直线上,根据平行线的判定即可作出判断.【详解】由于木工画一条线实际上是在画一个直角,且这些直角的一边在同一直线上,且这些直角是同位角相等,因而这些直线平行.故选:C【点睛】本题是平行线判定在实质中的应用,关键能够把实际问题转化为数学问题.6、C【分析】根据平行线的性质与判定可以判断①②④,根据垂线段最短可以判断③.【详解】解:①平面内,垂直于同一条直线的两直线平行,是真命题;②经过直线外一点,有且只有一条直线与这条直线平行,是真命题;③垂线段最短,是真命题;④两直线平行,同旁内角互补,是假命题,∴真命题有3个,故选C.【点睛】本题主要考查了判断命题真假,熟知相关知识是解题的关键.7、B【分析】由题意可知∠ADF=45°,则由平行线的性质可得∠B+∠BDF=180°,求得∠BDF=150°,从而可求∠ADB的度数.【详解】解:由题意得∠ADF=45°,∵,∠B=30°,∴∠B+∠BDF=180°,∴∠BDF=180°﹣∠B=150°,∴∠ADB=∠BDF﹣∠ADF=105°.故选:B【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同旁内角互补.8、D【分析】根据补角的定义求得∠BOC的度数,再根据余角的定义求得∠BOD的度数.【详解】解:∵,∴∠BOC=180°-150°=30°,∵,即∠COD=90°,∴∠BOD=90°-30°=60°,故选:D【点睛】本题考查了补角和余角的计算,熟练掌握补角和余角的定义是解题的关键.9、B【分析】首先根据题意求出,然后根据求解即可.【详解】解:∵∠AOC和∠BOD都是直角,∠DOC=38°,∴,∴.故选:B.【点睛】此题考查了角度之间的和差运算,直角的性质,解题的关键是根据直角的性质求出的度数.10、A【分析】根据“两直线平行,内错角相等”进行计算.【详解】解:如图,∵l1∥l2,∴∠AOB=∠OBC=42°,∴80°-42°=38°,即l1绕点O至少旋转38度才能与l2平行.故选:A.【点睛】考查了旋转的性质和平行线的性质,根据平行线的性质得到∠AOB=∠OBC=42°是解题的关键,难度不大.二、填空题1、【分析】先根据平行线的性质得到,结合已知∠EFG+∠EGD=150°,解得∠EGD=,再根据折叠的性质解得,结合两直线平行,同旁内角互补得到,据此整理得,进而解题.【详解】解:∠EFG+∠EGD=150°,∠EGD=折叠故答案为:.【点睛】本题考查折叠的性质、平行线的性质等知识,两直线平行,同旁内角互补,掌握相关知识是解题关键.2、138°【分析】根据垂直的定义得到∠AOC=∠DOB=90°,由互余关系得到∠BOC=90°-∠COD=90°-42°=48°,即可求出∠AOB.【详解】解:∵AO⊥OC,OB⊥OD,∴∠AOC=∠DOB=90°,又∵∠COD=42°,∴∠BOC=90°-∠COD=90°-42°=48°,∴∠AOB=∠AOC+∠BOC=90°+48°=138°.【点睛】本题考查了余角的概念:若两个角的和为90°,那么这两个角互余.3、②③④【分析】根据平行线的判定定理,逐一判断,即可得到答案.【详解】∵,∴,∴①不符合题意;∵∠C+∠ABC=180°,∴AB∥CD;∴②符合题意;∵∠A=∠CDE,∴AB∥CD;∴③符合题意;∵∠1=∠2,∴AB∥CD.故答案为:②③④.【点睛】本题主要考查平行线的判定定理,掌握平行线的判定定理是解题的关键.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.4、108°【分析】首先根据邻补角的定义得到∠BOC,然后由角平分线的定义求得∠COD即可.【详解】解:∵∠1=36°,∴∠COB=180°-36°=144°,∵OD平分∠BOC,∴∠COD=∠BOC=×144°=72°,∴∠AOD=∠1+∠COD=36°+72°=108°.故答案为:108°.【点睛】本题主要考查角平分线及邻补角,角的和差,熟练掌握邻补角及角平分线的定义是解题的关键.5、25【分析】先证明再证明从而可得答案.【详解】解: OE是的平分线, ∵, 故答案为:【点睛】本题考查的是角平分线的定义,平行线的性质,熟练的运用平行线的性质与角平分线的定义证明角的相等是解本题的关键.三、解答题1、(1)∠AOD=36°,∠BOD=144°;(2)∠BOE =54°【解析】【分析】(1)先由的度数是的4倍,得到∠BOD=4∠AOD,再由邻补角互补得到∠AOD+∠BOD=180°,由此求解即可;(2)根据垂线的定义可得∠DOE=90°,则∠BOE=∠BOD-∠DOE=54°.【详解】解:(1)∵的度数是的4倍,∴∠BOD=4∠AOD,又∵∠AOD+∠BOD=180°,∴5∠AOD=180°,∴∠AOD=36°,∴∠BOD=144°;(2)∵OE⊥CD,∴∠DOE=90°,∴∠BOE=∠BOD-∠DOE=54°.【点睛】本题主要考查了垂线的定义,邻补角互补,熟练掌握邻补角互补是解题的关键.2、(1)平行,理由见解析;(2)∠BAE+∠MCD=90°,理由见解析;(3)∠BAC=∠PQC+∠QPC,理由见解析.【解析】【分析】(1)先根据CE平分∠ACD,AE平分∠BAC可得∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,根据平行线的判定定理即可得出结论;(2)如图,过E作EF∥AB,由AB//CD可得EF∥AB∥CD,根据平行线的性质可得∠BAE=∠AEF,∠FEC=∠DCE,可得∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;(3)如图,过点C作CM//PQ,可得∠PQC=∠MCN,∠QPC=∠PCM,根据AB∥CD可知∠BAC+∠ACD=180°,根据∠PCQ+∠PCM+∠MCN=180°,可得∠QPC+∠PQC+∠PCQ=180°,即可得出∠BAC=∠PQC+∠QPC.【详解】(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE,∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180°,∴AB∥CD(2)∠BAE+∠MCD=90°;理由如下:如图,过E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE,∵∠AEC=∠AEF+∠FEC=90°,∴∠BAE+∠ECD=90°,∵∠MCE=∠ECD=∠MCD,∴∠BAE+∠MCD=90°. (3)如图,过点C作CM//PQ,∴∠PQC=∠MCN,∠QPC=∠PCM,∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠PCQ+∠PCM+∠MCN=180°,∴∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC. 【点睛】本题考查平行线的判定与性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.3、180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线的定义;;两直线平行,内错角相等【解析】【分析】由AB与CD平行,利用两直线平行同旁内角互补求出∠BCD度数,由CA为角平分线,利用角平分线定义求出∠2的度数,再利用两直线平行内错角相等即可确定出∠1的度数.【详解】证明:∵AB∥CD,(已知)∴∠B+∠BCD=180°,(两直线平行同旁内角互补)∵∠B=120°(已知),∴∠BCD=60°.又CA平分∠BCD(已知),∴∠2=30°,(角平分线定义).∵AB∥CD(已知),∴∠1=∠2=30°.(两直线平行内错角相等).故答案为:180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线定义;∠2;两直线平行,内错角相等.【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.4、∠2=115°,∠3=65°,∠4=115°【解析】【分析】根据对顶角相等和邻补角定义可求出各个角.【详解】解:∵∠1=65°,∠1=∠3,∴∠3=65°,∵∠1=65°,∠1+∠2=180°,∴∠2=180°-65°=115°,又∵∠2=∠4,∴∠4=115°.【点睛】本题考核知识点:对顶角,邻补角,解题关键是掌握对顶角,邻补角的定义和性质.5、(1),(2)【解析】【分析】(1)根据平角的定义可求;(2)根据和,代入解方程求出即可.【详解】解:(1)∵,∴,故答案为:.(2)∵OM平分,∴,∵,∴,∴,∴.【点睛】本题考查了角平分线的有关计算,解题关键是准确识图,弄清角之间的数量关系.
相关试卷
这是一份初中第七章 观察、猜想与证明综合与测试达标测试,共21页。试卷主要包含了如图,直线AB,下列说法中正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试巩固练习,共23页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。
这是一份初中北京课改版第七章 观察、猜想与证明综合与测试同步达标检测题,共21页。试卷主要包含了如图,能判定AB∥CD的条件是等内容,欢迎下载使用。