初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习
展开这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习,共20页。试卷主要包含了下列命题中,为真命题的是,如图,若的补角是125°,则的余角是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )
A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°
2、如图,直线a∥b,Rt△ABC的直角顶点C在直线b上.若∠1=50°,则∠2的度数为( )
A.30° B.40° C.50° D.60°
3、如图,已知AO⊥OC,OB⊥OD,∠COD=38°,则∠AOB的度数是( )
A.30º B.145º C.150º D.142º
4、如所示各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
5、下列命题中,为真命题的是( )
A.若,则 B.若,则
C.同位角相等 D.对顶角相等
6、下列图形中,∠1与∠2不是对顶角的有( )
A.1个 B.2个 C.3个 D.0个
7、如图:O为直线AB上的一点,OC为一条射线,OD平分,OE平分,图中互余的角共有( )
A.1对 B.2对 C.4对 D.6对
8、如图,直线l1l2,直线l3与l1、l2分别相交于点A,C,BC⊥l3交l1于点B,若∠2=30°,则∠1的度数为( )
A.30° B.40° C.50° D.60°
9、若的补角是125°,则的余角是( )
A.90° B.54° C.36° D.35°
10、下列说法不正确的是( )
A.两点确定一条直线
B.经过一点只能画一条直线
C.射线AB和射线BA不是同一条射线
D.若∠1+∠2=90°,则∠1与∠2互余
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,,.则图中与互补的角是______.
2、已知,那么的余角是_____.
3、已知,则的补角 ______ .
4、如图,已知,CE平分,,则______°.
5、填写推理理由:
如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.
证明:∵CD∥EF,
∴∠DCB=∠2________.
∵∠1=∠2,
∴∠DCB=∠1________.
∴GD∥CB________.
∴∠3=∠ACB________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,直线AB,CD相交于点O,,OF平分.
(1)写出图中所有与互补的角;
(2)若,求的度数.
2、(1)已知:如图1所示,已知∠AOC=90°,∠AOB=38°,OD平分∠BOC,请判断∠AOD和∠BOD之间的数量关系,并说明理由;
(2)已知:如图2,点O在直线AD上,射线OC平分∠BOD.请判断∠AOC与∠BOC之间的数量关系,并说明理由;
(3)已知:如图3,∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.直接写出锐角∠MPN的度数是 .
3、如图,已知∠AOB=90°,∠COD=90°,OE为∠BOD的平分线,∠BOE=17°,求∠AOC的度数.
4、如图1,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC=∠AOB,OD平分∠AOC.
(1)分别求∠AOB的补角和∠AOC的度数;
(2)现有射线OE,使得∠BOE=30°.
①小明在图2中补全了射线OE,根据小明所补的图,求∠DOE的度数;
②小静说:“我觉得小明所想的情况并不完整,∠DOE还有其他的结果.”请你判断小静说的是否正确?若正确,请求出∠DOE的其他结果;若不正确,请说明理由.
5、根据解答过程填空(写出推理理由或数学式):
如图,已知∠DAF=∠F,∠B=∠D,试说明AB∥DC.
证明:∵∠DAF=∠F(已知).
∴AD∥BF( ),
∴∠D=∠DCF( ).
∵∠B=∠D(已知),
∴( )=∠DCF(等量代换),
∴AB∥DC( ).
---------参考答案-----------
一、单选题
1、D
【分析】
同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.
【详解】
解:(同位角相等,两直线平行),故A不符合题意;
∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;
(同位角相等,两直线平行)故C不符合题意;
∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,
所以不能判定 故D符合题意;
故选D
【点睛】
本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.
2、B
【分析】
由平角的定义可求得∠BCD的度数,再利用平行线的性质即可求得∠2的度数.
【详解】
解:如图所示:
∵∠1=50°,∠ACB=90°,
∴∠BCD=180°﹣∠1﹣∠BCD=40°,
∵a∥b,
∴∠2=∠BCD=40°.
故选:B.
【点睛】
本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.
3、D
【分析】
根据垂直的定义得到∠AOC=∠DOB=90°,由互余关系得到∠BOC=52°,然后计算∠AOC+∠BOC即可.
【详解】
解:∵AO⊥OC,OB⊥OD,
∴∠AOC=∠DOB=90°,
而∠COD=38°,
∴∠BOC=90°-∠COD=90°-38°=52°,
∴∠AOB=∠AOC+∠BOC=90°+52°=142°.
故选:D.
【点睛】
本题考查了余角的概念:若两个,角的和为90°,那么这两个角互余.
4、B
【分析】
根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.
【详解】
解:A.∠1与∠2没有公共顶点,不是对顶角;
B.∠1与∠2有公共顶点,并且两边互为反向延长线,是对顶角;
C.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;
D.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角.
故选:B.
【点睛】
本题主要考查了对顶角的定义,熟记对顶角的定义是解题的关键.
5、D
【分析】
利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.
【详解】
解:A、若,则或,故A错误.
B、当时,有,故B错误.
C、两直线平行,同位角相等,故C错误.
D、对顶角相等,D正确.
故选:D .
【点睛】
本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.
6、C
【分析】
根据对顶角的定义:有公共顶点且两条边都互为反向延长线的两个角称为对顶角,逐一判断即可.
【详解】
解:①中∠1和∠2的两边不互为反向延长线,故①符合题意;
②中∠1和∠2是对顶角,故②不符合题意;
③中∠1和∠2的两边不互为反向延长线,故③符合题意;
④中∠1和∠2没有公共点,故④符合题意.
∴∠1 和∠2 不是对顶角的有3个,
故选C.
【点睛】
此题考查的是对顶角的识别,掌握对顶角的定义是解决此题的关键.
7、C
【分析】
根据余角的定义求解即可.余角:如果两个角相加等于90°,那么这两个角互为余角.
【详解】
解:∵OD平分,OE平分,
∴,
又∵,即,
∴,,,,
∴互余的角共有4对.
故选:C.
【点睛】
此题考查了余角的定义,角平分线的概念等知识,解题的关键是熟练掌握余角的定义.余角:如果两个角相加等于90°,那么这两个角互为余角.
8、D
【分析】
根据平行线的性质和垂直的定义解答即可.
【详解】
解:∵BC⊥l3交l1于点B,
∴∠ACB=90°,
∵∠2=30°,
∴∠CAB=180°−90°−30°=60°,
∵l1l2,
∴∠1=∠CAB=60°.
故选:D.
【点睛】
此题考查平行线的性质,关键是根据平行线的性质解答.
9、D
【分析】
根据题意,得=180°-125°,的余角是90°-(180°-125°)=125°-90°,选择即可.
【详解】
∵的补角是125°,
∴=180°-125°,
∴的余角是90°-(180°-125°)=125°-90°=35°,
故选D.
【点睛】
本题考查了补角,余角的计算,正确列出算式是解题的关键.
10、B
【分析】
根据两点确定一条直线,即可判断A;根据过一点可以画无数条直线可以判断B;根据射线的表示方法即可判断C;根据余角的定义,可以判断D.
【详解】
解:A、两点确定一条直线,说法正确,不符合题意;
B、过一点可以画无数条直线,说法错误,符合题意;
C、射线AB和射线BA不是同一条射线,说法正确,不符合题意;
D、若∠1+∠2=90°,则∠1与∠2互余,说法正确,不符合题意;
故选B.
【点睛】
本题主要考查了两点确定一条直线,;过一点可以画无数条直线,射线的表示方法余角的定义,熟知相关知识是解题的关键.
二、填空题
1、
【分析】
利用互补的定义得出与互补的角.
【详解】
解:∵,,
∴,,
∴,
即
∴与互补的角是:
故答案为:
【点睛】
本题考查了补角的概念和垂直的定义,如果两个角的和等于180°(平角),就说这两个角互为补角,简称“互补”,即其中一个角是另一个角的补角.
2、
【分析】
直接利用互余两角的关系,结合度分秒的换算得出答案.
【详解】
∵,
∴的余角为:.
故答案为:.
【点睛】
此题主要考查了余角的定义和分秒的转换,正确把握相关定义是解题关键.
3、
【分析】
根据补角的定义,求解即可,和为的两个角互为补角.
【详解】
解:,所以的补角
故答案为.
【点睛】
此题考查了补角的定义,解题的关键是掌握补角的定义.
4、65
【分析】
由平行线的性质先求解再利用角平分线的定义可得答案.
【详解】
解: , ,
CE平分,
故答案为:
【点睛】
本题考查的是角平分线的定义,平行线的性质,掌握“两直线平行,同旁内角互补”是解本题的关键.
5、两直线平行,同位角相等 等量代换 内错角相等,两直线平行 两直线平行,同位角相等
【分析】
根据平行线的性质得出,求出,根据平行线的判定得出,利用平行线的性质即可得出.
【详解】
证明:
∵,
∴(两直线平行,同位角相等)
∵,
∴.(等量代换)
∴(内错角相等,两直线平行).
∴(两直线平行,同位角相等).
故答案为:①两直线平行,同位角相等;②等量代换;③内错角相等,两直线平行;④两直线平行,同位角相等.
【点睛】
题目主要考查平行线的判定定理及性质,理解题意,结合图形,综合运用判定的性质定理是解题关键.
三、解答题
1、(1),,;(2)30°
【解析】
【分析】
(1)根据邻补角的定义确定出∠AOC和∠BOD,再根据角平分线的定义可得∠AOF=∠EOF,根据垂直的定义可得∠COF=∠DOF=90°,然后根据等角的余角相等求出∠DOE=∠AOC,从而最后得解;
(2)根据角平分线的定义求出∠AOF,再根据余角的定义求出∠AOC,然后根据对顶角相等解答.
【详解】
解:(1)因为直线AB,CD相交于点O,
所以和与互补.
因为OF平分,所以.
因为,所以.
因为,
,
所以,
所以与互补的角有,,.
(2)因为OF平分,所以,
由(1)知,,
所以,
由(1)知,和与互补,
所以(同角的补角相等).
【点睛】
本题考查了余角和补角,对顶角相等的性质,角平分线的定义,难点在于(1)根据等角的余角相等确定出与∠AOD互补的第三个角.
2、(1)∠AOD+∠BOD=90°,理由见解析;(2)∠AOC+∠BOC=180°,理由见解析;(3)45°
【解析】
【分析】
(1)由∠AOC=90°,得到∠AOD+∠COD=90°,再由OD平分∠BOC,可得∠BOC=2∠COD=2∠BOD,则∠AOD+∠BOD=90°;
(2)由OC平分∠BOD,得到∠BOD=2∠COD=2∠BOC,再由∠AOC+∠COD=180°,即可得到∠AOC+∠BOC=180°;
(3)由∠EPQ和∠FPQ互余,得到∠EPQ+∠FPQ=90°,由射线PM平分∠EPQ,射线PN平分∠FPQ,得到,,则.
【详解】
解:(1)∠AOD+∠BOD=90°,理由如下:
∵∠AOC=90°,
∴∠AOD+∠COD=90°,
∵OD平分∠BOC,
∴∠BOC=2∠COD=2∠BOD,
∴∠AOD+∠BOD=90°;
(2)∠AOC+∠BOC=180°,理由如下:
∵OC平分∠BOD,
∴∠BOD=2∠COD=2∠BOC,
∵∠AOC+∠COD=180°,
∴∠AOC+∠BOC=180°;
(3)∵∠EPQ和∠FPQ互余,
∴∠EPQ+∠FPQ=90°,
∵射线PM平分∠EPQ,射线PN平分∠FPQ,
∴,,
∴,
故答案为:45°.
【点睛】
本题主要考查了与余角和补角有关的计算,角平分线的定义,解题的关键在于能够熟练掌握相关知识进行求解.
3、146°
【解析】
【分析】
由OE是∠BOD的平分线,∠BOE=17°,可知∠BOD;又由∠COD=90°,∠AOB=90°,所以根据圆周角360°可计算∠AOC.
【详解】
解:∵OE为∠BOD的平分线,
∴∠BOD=2∠BOE,
∵∠BOE=17°,
∴∠BOD=34°.
又∵∠AOB=∠COD=90°,∠AOB+∠COD+∠AOC+∠BOD=360°,
∴∠AOC =360°-∠AOB-∠COD-∠BOD=360°-90°-90°-34°=146°.
【点睛】
本题主要考查角的比较与运算,涉及到余角、圆周角、角平分线的性质等知识点,找到相应等量关系是解此题的关键.
4、(1)80°;(2)①110°;②正确, 50°
【解析】
【分析】
(1)根据补角定义求解即可和已知条件直接求解即可;
(2)①根据角平分线的定义求得∠AOD,进而求得∠BOD,根据∠DOE=∠BOD+∠BOE即可求得∠DOE;②根据题意作出图形,进而结合图形可知∠DOE=∠BOD-∠BOE即可求得∠DOE;
【详解】
解:(1)因为∠AOB=120°,
所以∠AOB的补角为180°-∠AOB=60°.
因为∠AOC=∠AOB,
所以∠AOC=×120°=80°;
(2)①因为OD平分∠AOC,∠AOC=80°,
所以∠AOD=∠AOC=40°,
所以∠BOD=∠AOB-∠AOD=80°,
所以∠DOE=∠BOD+∠BOE=110°;
②正确;如图,
射线OE还可能在∠BOC的内部,
所以∠DOE=∠BOD-∠BOE=
【点睛】
本题考查了求一个角的补角,角平分线的定义,角度的计算,数形结合是解题的关键.
5、内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.
【解析】
【分析】
根据平行线的性质与判定条件完成证明过程即可.
【详解】
证明:∵∠DAF=∠F(已知).
∴AD∥BF(内错角相等,两直线平行),
∴∠D=∠DCF(两直线平行,内错角相等).
∵∠B=∠D(已知),
∴∠B=∠DCF(等量代换),
∴AB∥DC(同位角相等,两直线平行).
故答案为:内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.
【点睛】
本题主要考查了平行线的性质与判定,熟知平行线的性质与判定条件是解题的关键.
相关试卷
这是一份初中数学第七章 观察、猜想与证明综合与测试课后练习题,共20页。试卷主要包含了下列语句中,是命题的是,一个角的补角比这个角的余角大.,下列命题是假命题的有等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课堂检测,共23页。试卷主要包含了下列语句中,错误的个数是,若的余角为,则的补角为等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练,共24页。试卷主要包含了已知,则的余角的补角是,下列命题是真命题的是等内容,欢迎下载使用。