


初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试达标测试
展开这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试达标测试,共21页。试卷主要包含了下列语句中,是命题的是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明章节训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,点D是AB上的一点,点E是AC边上的一点,且∠B=70°,∠ADE=70°,∠DEC=100°,则∠C是( )
A.70° B.80° C.100° D.110°
2、如图,∠AOC和∠BOD都是直角,如果∠DOC=38°,那么∠AOB的度数是( )
A.128° B.142° C.38° D.152°
3、下列图形中,∠1与∠2不是对顶角的有( )
A.1个 B.2个 C.3个 D.0个
4、如图,货轮O航行过程中,同时发现灯塔A和轮船B,灯塔A在货轮O北偏东40°的方向,∠AOE=∠BOW,则轮船B在货轮( )
A.西北方向 B.北偏西60° C.北偏西50° D.北偏西40°
5、嘉淇在证明“平行于同一条直线的两条直线平行”时,给出了如下推理过程:
已知:如图,b∥a,c∥a, 求证:b∥c; 证明:作直线DF交直线a、b、c分 别于点D、E、F, ∵a∥b,∴∠1=∠4,又∵a∥c, ∴∠1=∠5, ∴b∥c. |
小明为保证嘉淇的推理更严谨,想在方框中“∴∠1=∠5”和“∴b∥c”之间作补充,下列说法正确的是( )
A.嘉淇的推理严谨,不需要补充
B.应补充∠2=∠5
C.应补充∠3+∠5=180°
D.应补充∠4=∠5
6、如图,平行线AB,CD被直线AE所截.若∠1=70°,则∠2的度数为( )
A.80° B.90° C.100° D.110°
7、如图,已知和都是直角,图中互补的角有( )对.
A.1 B.2 C.3 D.0
8、下列语句中,是命题的是( )
①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.
A.①④⑤ B.①②④ C.①③④ D.②③④⑤
9、如所示各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
10、若∠α=55°,则∠α的余角是( )
A.35° B.45° C.135° D.145°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若α=25°57′,则2α的余角等于_____.
2、如图,O是直线AB上一点,已知∠1=36°,OD平分∠BOC,则∠AOD=_____.
3、如图,已知AO⊥OC,OB⊥OD,∠COD=42°,则∠AOB=__________.
4、如图,小明同学在练习本上的相互平行的横格上先画了直线,度量出∠1=112°,接着他准备在点A处画直线.若要使∥,则∠2的度数为_____度.
5、如图,E在AD的延长线上,下列四个条件:①∠3=∠4;②∠C+∠ABC=180°;③∠A=∠CDE;④∠1=∠2,其中能判定AB∥CD的是________.(填序号)
三、解答题(5小题,每小题10分,共计50分)
1、如图,CDAB,点O在直线AB上,OE平分∠BOD,OF⊥OE,∠D=110°,求∠DOF的度数.
2、已知:如图,直线a、b、c两两相交,且∠1=2∠3,∠2=86°,求∠4的度数.
3、如图,EF⊥BC,∠1=∠C,∠2+∠3=180°,试说明∠ADC=90°.请完善解答过程,并在括号内填写相应的理论依据.
解:∵∠1=∠C,(已知)
∴GD∥ .( )
∴∠2=∠DAC.( )
∵∠2+∠3=180°,(已知)
∴∠DAC+∠3=180°.(等量代换)
∴AD∥EF.( )
∴∠ADC=∠ .( )
∵EF⊥BC,(已知)
∴∠EFC=90°.( )
∴∠ADC=90°.(等量代换)
4、如图直线,直线与分别和交于点交直线b于点C.
(1)若,直接写出 ;
(2)若,则点B到直线的距离是 ;
(3)在图中直接画出并求出点A到直线的距离.
5、如图,已知∠AOB=140°,∠COE与∠EOD互余,OE平分∠AOD.
(1)若∠COE=40°,求∠DOE和∠BOD;
(2)设∠COE=α,∠BOD=β,试探究α与β之间的数量关系.
---------参考答案-----------
一、单选题
1、B
【分析】
先证明DEBC,根据平行线的性质求解.
【详解】
解:因为∠B=∠ADE=70°
所以DEBC,
所以∠DEC+∠C=180°,所以∠C=80°.
故选:B.
【点睛】
此题主要考查平行线的判定与性质,解题的关键是熟知同位角相等,两直线平行.
2、B
【分析】
首先根据题意求出,然后根据求解即可.
【详解】
解:∵∠AOC和∠BOD都是直角,∠DOC=38°,
∴,
∴.
故选:B.
【点睛】
此题考查了角度之间的和差运算,直角的性质,解题的关键是根据直角的性质求出的度数.
3、C
【分析】
根据对顶角的定义:有公共顶点且两条边都互为反向延长线的两个角称为对顶角,逐一判断即可.
【详解】
解:①中∠1和∠2的两边不互为反向延长线,故①符合题意;
②中∠1和∠2是对顶角,故②不符合题意;
③中∠1和∠2的两边不互为反向延长线,故③符合题意;
④中∠1和∠2没有公共点,故④符合题意.
∴∠1 和∠2 不是对顶角的有3个,
故选C.
【点睛】
此题考查的是对顶角的识别,掌握对顶角的定义是解决此题的关键.
4、D
【分析】
根据题意得:∠AON=40°,再由等角的余角相等,可得∠BON=∠AON=40°,即可求解.
【详解】
解:根据题意得:∠AON=40°,
∵∠AOE=∠BOW,∠AON+∠AOE=90°,∠BON+∠BOW=90°,
∴∠BON=∠AON=40°,
∴轮船B在货轮的北偏西40°方向.
故选:D
【点睛】
本题主要考查了余角的性质,方位角,熟练掌握等角的余角相等是解题的关键.
5、D
【分析】
根据平行线的性质与判定、平行公理及推论解决此题.
【详解】
解:证明:作直线DF交直线a、b、c分别于点D、E、F,
∵a∥b,
∴∠1=∠4,
又∵a∥c,
∴∠1=∠5,
∴∠4=∠5.
∴b∥c.
∴应补充∠4=∠5.
故选:D.
【点睛】
本题主要考查平行线的性质与判定、平行公理及推论,熟练掌握平行线的性质与判定、平行公理及推论是解决本题的关键.
6、D
【分析】
直接利用对顶角以及平行线的性质分析得出答案.
【详解】
解:
∵∠1=70°,
∴∠1=∠3=70°,
∵ABDC,
∴∠2+∠3=180°,
∴∠2=180°−70°=110°.
故答案为:D.
【点睛】
此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.
7、B
【分析】
如图,延长BO至点E,根据平角的定义,由∠BOD=90°,得∠DOE=180°−∠DOB=90°,那么∠DOE=∠DOB=∠AOC=90°,故∠AOC+∠BOD=180°.由∠DOE=∠DOB=∠AOC=90°,得∠AOE+∠AOD=∠AOD+∠COD=∠DOC+∠BOC,那么∠AOE=∠COD,∠AOD=∠BOC.由∠AOE+∠AOB=180°,得∠COD+∠AOB=180°.
【详解】
解:如图,延长BO至点E.
∵∠BOD=90°,
∴∠DOE=180°−∠DOB=90°.
∴∠DOE=∠DOB=∠AOC=90°.
∴∠AOC+∠BOD=180°,∠AOE+∠AOD=∠AOD+∠COD=∠DOC+∠BOC.
∴∠AOE=∠COD,∠AOD=∠BOC.
∵∠AOE+∠AOB=180°,
∴∠COD+∠AOB=180°.
综上:∠AOC与∠BOD互补,∠AOB与∠COD互补,共2对.
故选:B.
【点睛】
本题主要考查补角,熟练掌握补角的定义是解决本题的关键.
8、A
【分析】
根据命题的定义分别进行判断即可.
【详解】
解:①若∠1=60°,∠2=60°,则∠1=∠2,是命题,符合题意;
②同位角相等吗?是疑问句,不是命题,不符合题意;
③画线段AB=CD,没有对事情作出判断,不是命题,不符合题意;
④如果a>b,b>c,那么a>c,是命题,符合题意;
⑤直角都相等,是命题,符合题意,
命题有①④⑤.
故选:A.
【点睛】
本题考查了命题与定理:判断事物的语句叫命题,命题有题设与结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.
9、B
【分析】
根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.
【详解】
解:A.∠1与∠2没有公共顶点,不是对顶角;
B.∠1与∠2有公共顶点,并且两边互为反向延长线,是对顶角;
C.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;
D.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角.
故选:B.
【点睛】
本题主要考查了对顶角的定义,熟记对顶角的定义是解题的关键.
10、A
【分析】
根据余角的定义即可得.
【详解】
由余角定义得∠α的余角为90°减去55°即可.
解:由余角定义得∠α的余角等于90°﹣55°=35°.
故选:A.
【点睛】
本题考查了余角的定义,熟记定义是解题关键.
二、填空题
1、38°6′
【分析】
根据余角的和等于90°列式计算即可求解.
【详解】
解:∵α=25°57′,
∴2α=51°54′,
∴2α的余角=90°﹣51°54′=38°6′.
故答案为:38°6′.
【点睛】
此题主要考查角度的计算,解题的关键是熟知余角的性质.
2、108°
【分析】
首先根据邻补角的定义得到∠BOC,然后由角平分线的定义求得∠COD即可.
【详解】
解:∵∠1=36°,
∴∠COB=180°-36°=144°,
∵OD平分∠BOC,
∴∠COD=∠BOC=×144°=72°,
∴∠AOD=∠1+∠COD=36°+72°=108°.
故答案为:108°.
【点睛】
本题主要考查角平分线及邻补角,角的和差,熟练掌握邻补角及角平分线的定义是解题的关键.
3、138°
【分析】
根据垂直的定义得到∠AOC=∠DOB=90°,由互余关系得到∠BOC=90°-∠COD=90°-42°=48°,即可求出∠AOB.
【详解】
解:∵AO⊥OC,OB⊥OD,
∴∠AOC=∠DOB=90°,
又∵∠COD=42°,
∴∠BOC=90°-∠COD=90°-42°=48°,
∴∠AOB=∠AOC+∠BOC=90°+48°=138°.
【点睛】
本题考查了余角的概念:若两个角的和为90°,那么这两个角互余.
4、68
【分析】
根据平行线的性质,得出,根据平行线的判定,得出,即可得到,进而得到的度数.
【详解】
解:∵练习本的横隔线相互平行,
,
∵要使,
∴,
又,
,
即,
故答案为:68.
【点睛】
本题主要考查了平行线的性质与判定条件,解题时注意:两直线平行,同位角相等;同旁内角互补,两直线平行.
5、②③④
【分析】
根据平行线的判定定理,逐一判断,即可得到答案.
【详解】
∵,
∴,
∴①不符合题意;
∵∠C+∠ABC=180°,
∴AB∥CD;
∴②符合题意;
∵∠A=∠CDE,
∴AB∥CD;
∴③符合题意;
∵∠1=∠2,
∴AB∥CD.
故答案为:②③④.
【点睛】
本题主要考查平行线的判定定理,掌握平行线的判定定理是解题的关键.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
三、解答题
1、
【解析】
【分析】
根据平行线的性质求得,根据角平分线和垂直求解即可.
【详解】
解:∵
∴
∵OE平分∠BOD
∴
又∵OF⊥OE
∴
∴
故答案为:
【点睛】
此题考查了平行线、角平分线以及垂直的性质,解题的关键是掌握并利用它们的性质进行求解.
2、43°
【解析】
【分析】
根据对顶角相等可得,结合已知条件即可求得∠4的度数.
【详解】
解:根据对顶角相等,
∴∠1=∠2=86°.
又∵∠1=2∠3,∴86°=2∠3,∴∠3=43°,
又∠3与∠4对顶角,
所以∠3=∠4=43°.
【点睛】
本题考查了对顶角相等,角度的计算,根据对顶角相等找出图中相等的角是解题的关键.
3、AC,同位角相等,两直线平行;两直线平行,内错角相等;同旁内角互补,两直线平行;EFC,两直线平行,同位角相等;垂直定义
【解析】
【分析】
根据平行线的判定与性质以及垂直的定义即可完成填空.
【详解】
解:如图,
∵∠1=∠C,(已知)
∴,(同位角相等,两直线平行)
∴∠2=∠DAC,(两直线平行,内错角相等)
∵∠2+∠3=180°,(已知)
∴∠DAC+∠3=180°,(等量代换)
∴,(同旁内角互补,两直线平行)
∴∠ADC=∠EFC,(两直线平行,同位角相等)
∵EF⊥BC,(已知)
∴∠EFC=90°,(垂直的定义)
∴∠ADC=90°.(等量代换)
【点睛】
本题考查平行线的判定与性质,掌握平行线的判定定理以及性质是解题的关键.
4、(1);(2)4;(3)作图见详解;点A到直线BC的距离为.
【解析】
【分析】
(1)根据平行线的性质:两直线平行,同旁内角互补及垂直的性质即可得;
(2)根据点到直线的距离可得点B到直线AC的距离为线段,由此即可得出结果;
(3)过点A作,点A到直线BC的距离为线段AD的长度,利用三角形等面积法即可得出.
【详解】
解:(1)∵,
∴,
∵,,
∴,
故答案为:;
(2)∵,
∴点B到直线AC的距离为线段,
故答案为:4;
(3)如图所示:过点A作,点A到直线BC的距离为线段AD的长度,
∵,
∴为直角三角形,
∴,
即,
解得:,
∴点A到直线BC的距离为.
【点睛】
题目主要考查平行线的性质及点到直线的距离,熟练掌握等面积法求距离是解题关键.
5、(1),;(2).
【解析】
【分析】
(1)根据互余的性质求出,根据角平分线的性质求出,结合图形计算即可;
(2)根据互余的性质用表示,根据角平分线的性质求出,结合图形列式计算即可.
【详解】
解:
(1)∵与互余,,
∴,
∵OE平分,
∴,
∴,
∴,;
(2)∵,且与互余,
∴,
∵OE平分,
∴,
∴,
解得:.
【点睛】
本题考查了余角及角平分线的性质,角的计算,理解两个性质并准确识图,理清图中各角度之间的关系是解题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试综合训练题,共21页。试卷主要包含了下列说法中正确的是,命题,直线等内容,欢迎下载使用。
这是一份2020-2021学年第七章 观察、猜想与证明综合与测试测试题,共22页。试卷主要包含了如图,直线AB,下列说法正确的个数是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后测评,共21页。试卷主要包含了如图,直线AB∥CD,直线AB,下列命题是假命题的有,如图,直线AB等内容,欢迎下载使用。