北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后练习题
展开这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后练习题,共20页。试卷主要包含了下列说法中,假命题的个数为,下列命题是真命题的是,下列语句中,是命题的是,若的余角为,则的补角为等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知,则的余角的补角是( )
A. B. C. D.
2、如图,直线l1l2,直线l3与l1、l2分别相交于点A,C,BC⊥l3交l1于点B,若∠2=30°,则∠1的度数为( )
A.30° B.40° C.50° D.60°
3、如图,下列条件中,不能判断∥的是( )
A.∠1=∠3 B.∠2=∠4 C.∠4+∠5=180° D.∠3=∠4
4、下列说法中,假命题的个数为( )
①两条直线被第三条直线所截,同位角相等
②如果两条直线都与第三条直线垂直,那么这两条直线互相平行
③过一点有且只有一条直线与这条直线平行
④在同一平面内,过一点有且只有一条直线与已知直线垂直
A.1个 B.2个 C.3个 D.4个
5、下列命题是真命题的是( )
A.等角的余角相等 B.同位角相等
C.互补的角一定是邻补角 D.两个锐角的和是钝角
6、下列语句中,是命题的是( )
①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.
A.①④⑤ B.①②④ C.①③④ D.②③④⑤
7、若的余角为,则的补角为( )
A. B. C. D.
8、如图,若要使与平行,则绕点至少旋转的度数是( )
A. B. C. D.
9、若一个角比它的余角大30°,则这个角等于( )
A.30° B.60° C.105° D.120°
10、∠A的余角是30°,这个角的补角是( )
A.30° B.60° C.120° D.150°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知:如图,直线AB、CD被直线GH所截,,求证: ABCD.完成下面的证明:
证明:∵AB被直线GH所截,
∴_____
∵
∴______
∴______________(________)(填推理的依据).
2、如图,AB与CD相交于点O,OE是∠AOC的平分线,且OC恰好平分∠EOB,则∠AOD=_____度.
3、图中∠AOB的余角大小是 _____°(精确到1°).
4、已知∠α=39°18',则∠α的补角的度数是 _____.
5、已知∠α=65°14'15″,那么∠α的余角等于 _____.
三、解答题(5小题,每小题10分,共计50分)
1、如图所示,点、分别在、上,、均与相交,,,求证:.
2、已知:如图,直线相交于点,平分,若,求的度数.
3、已知AB∥CD,点是AB,CD之间的一点.
(1)如图1,试探索∠AEC,∠BAE,∠DCE之间的数量关系;
以下是小明同学的探索过程,请你结合图形仔细阅读,并完成填空(理由或数学式):
解:过点E作PE∥AB(过直线外一点有且只有一条直线与这条直线平行).
∵AB∥CD(已知),
∴PE∥CD( ),
∴∠BAE=∠1,∠DCE=∠2( ),
∴∠BAE+∠DCE= + (等式的性质).
即∠AEC,∠BAE,∠DCE之间的数量关系是 .
(2)如图2,点F是AB,CD之间的一点,AF平分∠BAE,CF平分∠DCE.
①若∠AEC=74°,求∠AFC的大小;
②若CG⊥AF,垂足为点G,CE平分∠DCG,∠AEC+∠AFC=126°,求∠BAE的大小.
4、如图所示,直线AB、CD相交于点O,∠1=65°,求∠2、∠3、∠4的度数
5、如图,在下列解答中,填写适当的理由或数学式:
(1)∵∠A=∠CEF,( 已知 )
∴________∥________; (________)
(2)∵∠B+∠BDE=180°,( 已知 )
∴________∥________;(________)
(3)∵DE∥BC,( 已知 )
∴∠AED=∠________; (________)
(4)∵AB∥EF,( 已知 )
∴∠ADE=∠________.(________)
---------参考答案-----------
一、单选题
1、A
【分析】
根据余角和补角定义解答.
【详解】
解:的余角的补角是,
故选:A .
【点睛】
此题考查余角和补角的定义:和为90度的两个角互为余角,和为180度的两个角是互为补角.
2、D
【分析】
根据平行线的性质和垂直的定义解答即可.
【详解】
解:∵BC⊥l3交l1于点B,
∴∠ACB=90°,
∵∠2=30°,
∴∠CAB=180°−90°−30°=60°,
∵l1l2,
∴∠1=∠CAB=60°.
故选:D.
【点睛】
此题考查平行线的性质,关键是根据平行线的性质解答.
3、D
【分析】
根据平行线的判定定理对各选项进行逐一判断即可.
【详解】
解:、,内错角相等,
,故本选项错误,不符合题意;
、,同位角相等,
,故本选项错误,不符合题意;
、,同旁内角互补,
,故本选项错误,不符合题意;
、,它们不是内错角或同位角,
与的关系无法判定,故本选项正确,符合题意.
故选:D.
【点睛】
本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.
4、C
【分析】
根据平行线的判定与性质、垂直的性质逐个判断即可得.
【详解】
解:①两条平行线被第三条直线所截,同位角相等,则原说法错误,是假命题;
②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,则原说法错误,是假命题;
③过直线外一点有且只有一条直线与这条直线平行,则原说法错误,是假命题;
④在同一平面内,过一点有且只有一条直线与已知直线垂直,则原说法正确,是真命题;
综上,假命题的个数是3个,
故选:C.
【点睛】
本题考查了平行线的判定与性质、垂直的性质,熟练掌握各性质是解题关键.
5、A
【分析】
由同角或等角的余角相等可判断A,由平行线的性质可判断B,由邻补角的定义可判断C,通过举反例,比如 可判断D,从而可得答案.
【详解】
解:等角的余角相等,正确,是真命题,故A符合题意,
两直线平行,同位角相等,所以同位角相等是假命题,故B不符合题意;
互补的角不一定是邻补角,所以互补的角一定是邻补角是假命题,故C不符合题意;
两个锐角的和不一定是钝角,所以两个锐角的和是钝角是假命题,故D不符合题意;
故选:A
【点睛】
本题考查的是等角的余角相等,平行线的性质,邻补角的定义,锐角与钝角的含义,掌握判断命题真假的方法是解题的关键.
6、A
【分析】
根据命题的定义分别进行判断即可.
【详解】
解:①若∠1=60°,∠2=60°,则∠1=∠2,是命题,符合题意;
②同位角相等吗?是疑问句,不是命题,不符合题意;
③画线段AB=CD,没有对事情作出判断,不是命题,不符合题意;
④如果a>b,b>c,那么a>c,是命题,符合题意;
⑤直角都相等,是命题,符合题意,
命题有①④⑤.
故选:A.
【点睛】
本题考查了命题与定理:判断事物的语句叫命题,命题有题设与结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.
7、C
【分析】
根据余角和补角的定义,先求出,再求出它的补角即可.
【详解】
解:∵的余角为,
∴,
的补角为,
故选:C.
【点睛】
本题考查了余角和补角的运算,解题关键是明确两个角的和为90度,这两个角互为余角,两个角的和为180度,这两个角互为补角.
8、A
【分析】
根据“两直线平行,内错角相等”进行计算.
【详解】
解:如图,
∵l1∥l2,
∴∠AOB=∠OBC=42°,
∴80°-42°=38°,
即l1绕点O至少旋转38度才能与l2平行.
故选:A.
【点睛】
考查了旋转的性质和平行线的性质,根据平行线的性质得到∠AOB=∠OBC=42°是解题的关键,难度不大.
9、B
【分析】
设这个角为α,则它的余角为:90°-α,由“一个角比它的余角大30°”列方程解方程即可的解.
【详解】
解:设这个角为α,则它的余角为:90°-α,
由题意得,α-(90°-α)=30°,
解得:α=60°,
故选:B
【点睛】
本题考查了余角的定义和一元一次方程的应用,根据题意列出等量关系是解题的关键.
10、C
【分析】
根据一个角的补角比这个角的余角大列式计算即可得解.
【详解】
解:一个角的余角是,
这个角的补角是.
故选:C.
【点睛】
本题考查了余角和补角,解题的关键是熟记概念并理清余角和补角的关系.
二、填空题
1、3 180° AB CD 同旁内角互补,两直线平行
【分析】
先根据对顶角相等求得∠3的度数,进而得到∠2+∠3=180°,即可判定AB∥CD.
【详解】
证明:∵AB被直线GH所截,∠1=112°,
∴∠1=∠3=112°
∵∠2=68°,
∴∠2+∠3=180°,
∴AB∥CD,(同旁内角互补,两直线平行)
故答案为∠3,180°,AB,CD,同旁内角互补,两直线平行.
【点睛】
本题主要考查了平行线的判定,两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.
2、60
【分析】
根据角平分线的定义得出∠AOE=∠COE,∠COE=∠BOC,求出∠AOE=∠COE=∠BOC,根据∠AOE+∠COE+∠BOC=180°,求出∠BOC,再根据对顶角相等求出答案即可.
【详解】
解:∵OE是∠AOC的平分线,OC恰好平分∠EOB,
∴∠AOE=∠COE,∠COE=∠BOC,
∴∠AOE=∠COE=∠BOC,
∵∠AOE+∠COE+∠BOC=180°,
∴∠BOC=60°,
∴∠AOD=∠BOC=60°,
故答案为:60.
【点睛】
本题考查了邻补角、对顶角,角平分线的性质知识点,做题的关键是掌握邻补角互补,角的平分线分成的两个角相等,对顶角相等.
3、63
【分析】
根据余角的定义:如果两个角的度数和为90度,那么这两个角互为余角,进行求解即可.
【详解】
解:由量角器上的度数可知,∠AOB=27°,
∴∠AOB的余角的度数=90°-∠AOB=63°,
故答案为:63.
【点睛】
本题主要考查了量角器测量角的度数和求一个角的余角,熟知余角的定义是解题的关键.
4、
【分析】
根据补角的概念求解即可.补角:如果两个角相加等于180°,那么这两个角互为补角.
【详解】
解:∵∠α=39°18',
∴∠α的补角=.
故答案为:.
【点睛】
此题考查了补角的概念和角度的计算,解题的关键是熟练掌握补角的概念.补角:如果两个角相加等于180°,那么这两个角互为补角.
5、
【分析】
根据互为余角的两角之和为90°,即可得出答案.
【详解】
解:=65°14'15″,
的余角=90°﹣65°14'15″=24°45'45″.
故答案为:24°45'45″.
【点睛】
本题主要是考查了余角的定义以及角度的运算,熟记互余的两个角之和为90°,是解决本题的关键.
三、解答题
1、证明见解析
【解析】
【分析】
由,证明,再证,最后根据对顶角相等,可得答案.
【详解】
证明:∵,
∴,
∴,
又∵,
∴,
∴,
∴,
∵,
∴.
【点睛】
本题主要考查了平行线的性质与判定,对顶角的性质,解题的关键在于能够熟练掌握相关知识进行求解.
2、
【解析】
【分析】
先根据平角的定义和可得,再根据角平分线的定义可得,然后根据对顶角相等即可得.
【详解】
解:,
,
平分,
,
由对顶角相等得:.
【点睛】
本题考查了对顶角相等、角平分线的定义等知识点,熟练掌握角平分线的定义是解题关键.
3、(1)平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE;(2)①37°;②52°
【解析】
【分析】
(1)结合图形利用平行线的性质填空即可;
(2)①过F作FG∥AB,由(1)得:∠AEC=∠BAE+∠DCE,根据AB∥CD,FG∥AB,CD∥FG,得出∠AFC=∠AFG+∠GFC=∠BAF+∠DCF,根据AF平分∠BAE,CF平分∠DCE,可得∠BAF=∠BAE,∠DCF=∠DCE,根据角的和差∠AFC=∠BAF+∠DCF=∠AEC即可;
②由①得:∠AEC=2∠AFC,可求∠AFC=42°,∠AEC=82°,根据CG⊥AF,求出∠GCF=90-∠AFC=48°,根据角平分线计算得出∠GCF=3∠DCF,求出∠DCF=16°即可.
【详解】
解:(1)平行于同一条直线的两条直线平行,
两直线平行,内错角相等,
∠1,∠2,
∠AEC=∠BAE+∠DCE,
故答案为:平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE,
(2)①过F作FG∥AB,
由(1)得:∠AEC=∠BAE+∠DCE,
∵AB∥CD,FG∥AB,
∴CD∥FG,
∴∠BAF=∠AFG,∠DCF=∠GFC,
∴∠AFC=∠AFG+∠GFC=∠BAF+∠DCF,
∵AF平分∠BAE,CF平分∠DCE,
∴∠BAF=∠BAE,∠DCF=∠DCE,
∴∠AFC=∠BAF+∠DCF,
=∠BAE+∠DCE,
=(∠BAE+∠DCE),
=∠AEC,
=×74°,
=37°;
②由①得:∠AEC=2∠AFC,
∵∠AEC+∠AFC=126°,
∴2∠AFC+∠AFC=126°
∴3∠AFC=126°,
∴∠AFC=42°,∠AEC=84°,
∵CG⊥AF,
∴∠CGF=90°,
∴∠GCF=90-∠AFC=48°,
∵CE平分∠DCG,
∴∠GCE=∠ECD,
∵CF平分∠DCE,
∴∠DCE=2∠DCF=2∠ECF,
∴∠GCF=3∠DCF,
∴∠DCF=16°,
∴∠DCE=32°,
∴∠BAE=∠AEC﹣∠DCE=52°.
【点睛】
本题考查平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程,掌握平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程是解题关键.
4、∠2=115°,∠3=65°,∠4=115°
【解析】
【分析】
根据对顶角相等和邻补角定义可求出各个角.
【详解】
解:∵∠1=65°,∠1=∠3,
∴∠3=65°,
∵∠1=65°,∠1+∠2=180°,
∴∠2=180°-65°=115°,
又∵∠2=∠4,
∴∠4=115°.
【点睛】
本题考核知识点:对顶角,邻补角,解题关键是掌握对顶角,邻补角的定义和性质.
5、(1)AB;EF;同位角相等,两直线平行;(2)DE;BC;同旁内角互补,两直线平行;(3)C;两直线平行,同位角相等;(4)DEF;两直线平行,内错角相等
【解析】
【分析】
(1)根据平行线的判定定理:同位角相等,两直线平行,即可得;
(2)根据平行线的判定定理:同旁内角互补,两直线平行,即可得;
(3)根据平行线的性质:两直线平行,同位角相等,即可得;
(4)根据平行线的性质:两直线平行,内错角相等,即可得.
【详解】
解:(1)∵,(已知)
∴,(同位角相等,两直线平行);
(2)∵,(已知)
∴,(同旁内角互补,两直线平行);
(3)∵,(已知)
∴,(两直线平行,同位角相等)
(4)∵,(已知)
∴(两直线平行,内错角相等).
故答案为:(1)AB;EF;同位角相等,两直线平行;(2)DE;BC;同旁内角互补,两直线平行;(3)C;两直线平行,同位角相等;(4)DEF;两直线平行,内错角相等.
【点睛】
题目主要考查平行线的判定定理和性质,熟练掌握理解平行线的性质定理并结合图形是解题关键.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试一课一练,共22页。试卷主要包含了如图,C,下列语句中,错误的个数是,下列命题中,真命题是,如图,能判定AB∥CD的条件是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试随堂练习题,共25页。试卷主要包含了下列说法,如图,直线AB∥CD,直线AB,一个角的补角比这个角的余角大.等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练,共23页。试卷主要包含了下列语句中,是命题的是,若的补角是150°,则的余角是,若的补角是125°,则的余角是等内容,欢迎下载使用。