初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后复习题
展开这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后复习题,共23页。试卷主要包含了下列说法中正确的是,如图,能判定AB∥CD的条件是,命题等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若∠α=55°,则∠α的余角是( )
A.35° B.45° C.135° D.145°
2、如图,直线AB、CD相交于点O,OE平分∠BOC,若∠BOD:∠BOE=1:2,则∠AOE的大小为( )
A.72° B.98°
C.100° D.108°
3、如图,AB∥CD,AE∥CF,∠A=41°,则∠C的度数为( )
A.139° B.141° C.131° D.129°
4、已知一个角等于它的补角的5倍,那么这个角是( )
A.30° B.60° C.45° D.150°
5、如图,∠AOC和∠BOD都是直角,如果∠DOC=38°,那么∠AOB的度数是( )
A.128° B.142° C.38° D.152°
6、下列说法中正确的是( )
A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短
C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点
7、一学员在广场上练习驾驶汽车,两次拐弯后行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) .
A.第一次向左拐30°,第二次向右拐30°.
B.第一次向右拐50°,第二次向左拐130°.
C.第一次向左拐50°,第二次向左拐130°.
D.第一次向左拐50°,第二次向右拐130°.
8、如图,能判定AB∥CD的条件是( )
A.∠2=∠B B.∠3=∠A C.∠1=∠A D.∠A=∠2
9、命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )
A.0个 B.1个 C.2个 D.3个
10、下列命题中,①在同一平面内,若,,则;②相等的角是对顶角;③能被整除的数也能被整除;④两点之间线段最短.真命题有( )
A.个 B.个 C.个 D.个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,,.则图中与互补的角是______.
2、如图,已知∠BOA=90°,直线CD经过点O, 若∠BOD:∠AOC=5:2,则∠AOC=_______.
3、如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系______ .
4、已知一个角等于70°38′,则这个角的余角等于______.
5、如图,直线AB、CD相交于O,∠COE是直角,∠1=57°,则∠2=_____.
三、解答题(5小题,每小题10分,共计50分)
1、已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点O处.
(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为 °,∠CON的度数为 °;
(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为 °;
(3)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为 °;∠DOC与∠BON的数量关系是∠DOC ∠BON(填“>”、“=”或“<”);
(4)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON的度数为 °;∠AOM﹣∠CON的度数为 °
2、如图,∠AOD = 130°,∠BOC:∠COD = 1:2,∠AOB是∠COD补角的.
(1)∠COD = _______ ;
(2)平面内射线OM满足∠AOM = 2∠DOM,求∠AOM的大小;
(3)将∠COD固定,并将射线OA,OB同时以2°/s的速度顺时针旋转,到OA与OD重合时停止.在旋转过程中,若射线OP为∠AOB的平分线,OQ为∠COD的平分线,当∠POQ+∠AOD=50°时,求旋转时间t(秒)的取值范围.
3、已知如图,AO⊥BC,DO⊥OE.
(1)不添加其它条件情况下,请尽可能多地写出图中有关角的等量关系(至少3个);
(2)如果∠COE=35°,求∠AOD的度数.
4、如图,点A、B、C在8×5网格的格点上,每小方格是边长为1个单位长度的正方形.请按要求画图,并回答问题:
(1)延长线段AB到点D,使BD=AB;
(2)过点C画CE⊥AB,垂足为E;
(3)点C到直线AB的距离是 个单位长度;
(4)通过测量 = ,并由此结论可猜想直线BC与AF的位置关系是 .
5、已知直线AB和CD交于点O,∠AOC=α,∠BOE=90°,OF平分∠AOD.
(1)当α=30°时,则∠EOC=_________°;∠FOD=_________°.
(2)当α=60°时,射线OE′从OE开始以12°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求经过多少秒射线OE′与射线OF′第一次重合?
(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间为_________秒.
---------参考答案-----------
一、单选题
1、A
【分析】
根据余角的定义即可得.
【详解】
由余角定义得∠α的余角为90°减去55°即可.
解:由余角定义得∠α的余角等于90°﹣55°=35°.
故选:A.
【点睛】
本题考查了余角的定义,熟记定义是解题关键.
2、D
【分析】
根据角平分线的定义得到∠COE=∠BOE,根据邻补角的定义列出方程,解方程求出∠BOD,根据对顶角相等求出∠AOC,结合图形计算,得到答案.
【详解】
解:设∠BOD=x,
∵∠BOD:∠BOE=1:2,
∴∠BOE=2x,
∵OE平分∠BOC,
∴∠COE=∠BOE=2x,
∴x+2x+2x=180°,
解得,x=36°,即∠BOD=36°,∠COE=72°,
∴∠AOC=∠BOD=36°,
∴∠AOE=∠COE+∠AOC=108°,
故选:D.
【点睛】
本题考查的是对顶角、邻补角的概念,掌握对顶角相等、邻补角之和为180°是解题的关键.
3、A
【分析】
如图,根据AECF,得到∠CGB=41°,根据ABCD,即可得到∠C=139°..
【详解】
解:如图,∵AECF,
∴∠A=∠CGB=41°,
∵ABCD,
∴∠C=180°-∠CGB=139°.
故选:A
【点睛】
本题考查了平行线的性质,熟知平行线的性质是解题关键.
4、D
【分析】
列方程求出这个角即可.
【详解】
解:设这个角为x,
列方程得:x=5(180°−x)
解得x=150°.
故选:D.
【点睛】
本题考查了补角,若两个角的和等于180°,则这两个角互补,列方程求出这个角是解题的关键.
5、B
【分析】
首先根据题意求出,然后根据求解即可.
【详解】
解:∵∠AOC和∠BOD都是直角,∠DOC=38°,
∴,
∴.
故选:B.
【点睛】
此题考查了角度之间的和差运算,直角的性质,解题的关键是根据直角的性质求出的度数.
6、B
【分析】
根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.
【详解】
解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;
B.两点之间的所有连线中,线段最短,正确;
C.相等的角不一定是对顶角,故不符合题意;
D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;
故选:B.
【点睛】
本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.
7、A
【分析】
根据题意分析判断即可;
【详解】
由第一次向左拐30°,第二次向右拐30°可得转完两次后相当于在原方向上转过了,和原来方向相同,故A正确;
第一次向右拐50°,第二次向左拐130°可得转完两次后相当于在原方向上左拐,故B错误;
第一次向左拐50°,第二次向左拐130°可得转完两次后相当于在原方向上右拐,故C错误;
第一次向左拐50°,第二次向右拐130°可得转完两次后相当于在原方向上右拐,故D错误;
综上所述,符合条件的是A.
故选:A.
【点睛】
本题主要考查了平行的判定与性质,准确分析判断是解题的关键.
8、D
【分析】
根据平行线的判定定理,找出正确选项即可.
【详解】
根据内错角相等,两直线平行,
∵∠A=∠2,
∴AB∥CD,
故选:D.
【点睛】
本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角,培养了学生“执果索因”的思维方式与能力.
9、C
【分析】
利用对顶角的性质、平行线的性质分别进行判断后即可确定正确的选项.
【详解】
解:①对顶角相等,正确,是真命题;
②在同一平面内,垂直于同一条直线的两直线平行,正确,是真命题;
③相等的角是对顶角,错误,是假命题,反例“角平分线分成的两个角相等”,但它们不是对顶角;
由“两直线平行,同位角相等”,前提是两直线平行,故④是假命题;
故选:C.
【点睛】
本题考查了命题与定理,解题的关键是了解对顶角的性质、平行线的性质等基础知识.
10、B
【分析】
根据对顶角的定义以及数的整除性和两点之间线段最短分析得出即可.
【详解】
解:①在同一平面内,若a⊥b,b⊥c,则a∥c,故为真命题;
②相等的角不一定是对顶角,故为假命题;
③能被2整除的数不一定能被4整除,故为假命题;
④两点之间线段最短,故为真命题;
故选B.
【点睛】
此题主要考查了命题与定理,熟练掌握相关的定理是解题关键.
二、填空题
1、
【分析】
利用互补的定义得出与互补的角.
【详解】
解:∵,,
∴,,
∴,
即
∴与互补的角是:
故答案为:
【点睛】
本题考查了补角的概念和垂直的定义,如果两个角的和等于180°(平角),就说这两个角互为补角,简称“互补”,即其中一个角是另一个角的补角.
2、60°度
【分析】
根据一个角的余角与这个角的补角的关系,可得∠BOD与∠AOC的关系,从而列方程,可得答案.
【详解】
解:∵∠AOC+∠BOC=90°,∠BOD+∠BOC=180°,
∴∠BOD=∠AOC+90°,
∵∠BOD:∠AOC=5:2,
∴∠BOD=∠AOC,
∴∠AOC=∠AOC+90°,
解得∠AOC=60°,
故答案为:60°.
【点睛】
本题考查了角的计算,解一元一次方程的应用,掌握利用一个角的余角与这个角的补角的关系是解题关键.
3、平行
【分析】
过点作,根据两直线平行,同旁内角互补,从而出,即可得出结果.
【详解】
解:过点作,
∴,
∵∠BAC+∠ACE+∠CEF=360°,
∴,
∴,
∴,
故答案为:平行.
【点睛】
本题考查了平行线的判定与性质以及平行线的推论,根据题意作出合理的辅助线是解本题的关键.
4、19°22′
【分析】
根据余角的定义解决此题.
【详解】
解:∵90°-70°38'=19°22′.
∴根据余角的定义,这个角的余角等于19°22′.
故答案为:19°22′.
【点睛】
本题主要考查了余角的定义,熟练掌握余角的定义是解决本题的关键.
5、33°
【分析】
由题意直接根据∠2=180°﹣∠COE﹣∠1,进行计算即可得出答案.
【详解】
解:由题意得:∠2=180°﹣∠COE﹣∠1=180°﹣90°﹣57°=33°.
故答案为:33°.
【点睛】
本题考查余角和补角的知识,属于基础题,注意数形结合思维分析的运用.
三、解答题
1、(1)120;150;(2)30°;(3)30,=;(4)150;30.
【解析】
【分析】
(1)根据∠AOC=60°,利用两角互补可得∠BOC=180°﹣60°=120°,根据∠AON=90°,利用两角和∠CON=∠AOC+∠AON即可得出结论;
(2)根据OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON的度数;
(3)根据对顶角求出∠AOD=30°,根据∠AOC=60°,可得∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.
(4)根据垂直可得∠AON与∠MNO互余,根据∠MNO=60°(三角板里面的60°角),可求∠AON=90°﹣60°=30°,根据∠AOC=60°,求出∠CON=∠AOC﹣∠AON=60°﹣30°=30°即可.
【详解】
解:(1)∵∠AOC=60°,∠BOC与∠AOC互补,∠AON=90°,
∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°=150°.
故答案为120;150;
(2)∵三角板一边OM恰好在∠BOC的角平分线OE上,
由(1)得∠BOC=120°,
∴∠BOM=∠BOC=60°,
又∵∠MON=∠BOM+∠BON=90°,
∴∠BON=90°﹣60°=30°.
故答案为30°;
(3)∵∠AOD=∠BON(对顶角),∠BON=30°,
∴∠AOD=30°,
又∵∠AOC=60°,
∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.
故答案为30,=;
(4)∵MN⊥AB,
∴∠AON与∠MNO互余,
∵∠MNO=60°(三角板里面的60°角),
∴∠AON=90°﹣60°=30°,
∵∠AOC=60°,
∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,
∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,
∴∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.
故答案为150;30.
【点睛】
本题考查图中角度的计算,角平分线的定义,对顶角性质,互为余角,补角,掌握角度的和差计算,角平分线的定义,对顶角性质,互为余角,补角是解题关键.
2、(1);(2)∠AOM的大小为或(3)旋转时间t(秒)的取值范围为
【解析】
【分析】
(1),用分别表示出与的大小,利用角之间的关系,即可求解.
(2)分射线OM在∠AOD 的内部和外部两类情况进行讨论,利用角与角之间的关系,即可求出答案.
(3)先观察到,寻找临界情况,利用角的关系求出对应两种临界情况下的旋转角度,进而求出时间t(秒)的取值范围.
【详解】
(1)解:设:,
∠BOC:∠COD = 1:2,∠AOB是∠COD补角的.
,。
,
,
解得:,
故.
(2)解:当射线OM在∠AOD 的内部时,如下图所示:
∠AOD = 130°,且∠AOM = 2∠DOM,
当射线OM在∠AOD 的外部时,如下图所示:
∠AOD = 130°,且∠AOM = 2∠DOM,
故∠AOM的大小为或.
(3)解:有(1)可得:,
射线OP为∠AOB的平分线,OQ为∠COD的平分线,
,,
可以观察到:,
若要求解时间的取值范围,需要找到临界情况,
当与重合时,此时恰好有,, 如下图所示:
可以观察到,若与未重合之前,必有一定不满足∠POQ+∠AOD=50°,故此时的时间恰好取到最小值,
由题意可知:一共旋转了,故时间,
,
当与重合时,此时有,,
如下图所示:
若此时继续往下旋转,必有,一定不满足∠POQ+∠AOD=50°,故此时的时间恰好取到最大值,
由题意可知:一共旋转了,故时间,
,
综上所述:.
【点睛】
本题主要是考查了求解角度大小、角平分线的性质以及角中的动点问题,熟练地利用角与角之间的关系,求解未知角的度数,针对求解动点的时间取值范围,尝试利用条件,找到满足题意的临界情况,是求解该题的关键.
3、(1),;(2).
【解析】
【分析】
(1)先根据垂直可得,再根据角的和差即可得;
(2)根据(1)的结论即可得出答案.
【详解】
解:(1),
,
,
,
即图中有关角的等量关系有,;
(2)由(1)已得:,
,
.
【点睛】
本题考查了垂直、角的和差,熟练掌握两条直线互相垂直,则四个角为直角是解题关键.
4、(1)见解析;(2)见解析;(3)2;(4),平行
【解析】
【分析】
(1)根据网格的特点和题意,延长到,使;
(2)根据网格是正方形,垂线的定义,画出,垂足为,点在线段的延长线上,
(3)点C到直线AB的距离即的长,网格的特点即可数出的长;
(4)根据同位角相等,两直线平行,或内错角相等,两直线平行即可得,即可知测量的角度
【详解】
解:(1)(2)如图所示,
(3)由网格可知
即点C到直线AB的距离是个单位长度
故答案为:2
(4)通过测量,可知
故答案为:,平行
【点睛】
本题考查了画线段,画垂线,平行线的性质与判定,点到直线的距离,掌握以上知识是解题的关键.
5、(1)60,75;(2)秒;(3)3或12或21或30
【解析】
【分析】
(1)根据题意利用互余和互补的定义可得:∠EOC与∠FOD的度数.
(2)由题意先根据,得出∠EOF=150°,则射线OE'、OF'第一次重合时,其OE'运动的度数+OF'运动的度数=150,列式解出即可;
(3)根据题意分两种情况在直线OE的左边和右边,进而根据其夹角列4个方程可得时间.
【详解】
解:(1)∵∠BOE=90°,
∴∠AOE=90°,
∵∠AOC=α=30°,
∴∠EOC=90°-30°=60°,
∠AOD=180°-30°=150°,
∵OF平分∠AOD,
∴∠FOD=∠AOD=×150°=75°;
故答案为:60,75;
(2)当,.
设当射线与射线重合时至少需要t秒,
可得,解得:;
答:当射线与射线重合时至少需要秒;
(3)设射线转动的时间为t秒,
由题意得:或或或,
解得:或12或21或30.
答:射线转动的时间为3或12或21或30秒.
【点睛】
本题考查对顶角相等,邻补角互补的定义,角平分线的定义,角的计算,第三问有难度,熟记相关性质是解题的关键,注意要分情况讨论.
相关试卷
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试精练,共21页。试卷主要包含了如图,直线AB,如图,能判定AB∥CD的条件是,直线等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步训练题,共20页。试卷主要包含了如图,能判定AB∥CD的条件是,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试随堂练习题,共21页。试卷主要包含了下列命题中,为真命题的是,下列说法正确的个数是等内容,欢迎下载使用。