北京课改版七年级下册第七章 观察、猜想与证明综合与测试一课一练
展开
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试一课一练,共21页。试卷主要包含了如图,不能推出a∥b的条件是,下列语句中,是命题的是,下列命题中,为真命题的是,下列命题是真命题的是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,∠1=∠2,∠3=25°,则∠4等于( )A.165° B.155° C.145° D.135°2、在证明命题“若,则”是假命题时,下列选项中所举反例不正确的是( )A. B. C. D.3、下列说法中,假命题的个数为( )①两条直线被第三条直线所截,同位角相等②如果两条直线都与第三条直线垂直,那么这两条直线互相平行③过一点有且只有一条直线与这条直线平行④在同一平面内,过一点有且只有一条直线与已知直线垂直A.1个 B.2个 C.3个 D.4个4、如图,直线AB,CD相交于点O,AOC30,OE⊥AB,OF是AOD的角平分线.若射线OE,OF分C别以18/s,3/s的速度同时绕点O顺时针转动,当射线OE,OF重合时,至少需要的时间是( )A.8s B.11s C.s D.13s5、如图,不能推出a∥b的条件是( )A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°6、下列语句中,是命题的是( )①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤ B.①②④ C.①③④ D.②③④⑤7、下列命题中,为真命题的是( )A.若,则 B.若,则C.同位角相等 D.对顶角相等8、下列命题是真命题的是( )A.等角的余角相等 B.同位角相等C.互补的角一定是邻补角 D.两个锐角的和是钝角9、如图,货轮O航行过程中,同时发现灯塔A和轮船B,灯塔A在货轮O北偏东40°的方向,∠AOE=∠BOW,则轮船B在货轮( )A.西北方向 B.北偏西60° C.北偏西50° D.北偏西40°10、若∠α=55°,则∠α的余角是( )A.35° B.45° C.135° D.145°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线AB和直线CD相交于点O,且∠AOC=2∠BOC,则∠AOD的度数为____________.2、两个角和的两边互相平行,且角比角的2倍少30°,则这个角是____________度.3、如图将一条两边互相平行的纸带按如图折叠,若∠EFG+∠EGD=150°,则∠EGD=_____4、如图,小明同学在练习本上的相互平行的横格上先画了直线,度量出∠1=112°,接着他准备在点A处画直线.若要使∥,则∠2的度数为_____度.
5、如图,O是直线AB上一点,已知∠1=36°,OD平分∠BOC,则∠AOD=_____.三、解答题(5小题,每小题10分,共计50分)1、如图,直线交于点,于点,且的度数是的4倍.(1)求的度数;(2)求的度数.2、如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠B=60°.试求∠ADG的度数.3、完成下列填空:已知:如图,,,CA平分;求证:.证明:∵(已知)∴________( )∵(已知)∴________( )又∵CA平分(已知)∴________( )∵(已知)∴_____________=30°( )4、如图,已知AEBF,AC⊥AE,BD⊥BF,AC与BD平行吗?补全下面的解答过程(理由或数学式).解:∵AEBF,∴∠EAB= .( )∵AC⊥AE,BD⊥BF,∴∠EAC=90°,∠FBD=90°.∴∠EAC=∠FBD( )∴∠EAB﹣ =∠FBG﹣ ,即∠1=∠2.∴ ( ).5、如图(甲),∠AOC和∠BOD都是直角.(1)如果∠DOC=29°,那么∠AOB的度数为 度.(2)找出图(甲)中相等的角.如果∠DOC≠29°,他们还会相等吗?(3)若∠DOC越来越小,则∠AOB如何变化?(4)在图(乙)中利用能够画直角的工具再画一个与∠FOE相等的角. ---------参考答案-----------一、单选题1、B【分析】设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.【详解】解:设∠4的补角为,如下图所示:
∠1=∠2,,,.故选:B.【点睛】本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.2、A【分析】所谓举反例是指满足命题的条件但不满足命题的结论,由此可判断.【详解】显然A选项既满足命题的条件也满足命题的结论,故不是举反例,其它三个选项满足命题的条件,但不满足命题的结论,所以都是举反例;故选:A【点睛】本题考查了命题的真假,说明一个命题是假命题要举反例.掌握举反例的含义是关键.3、C【分析】根据平行线的判定与性质、垂直的性质逐个判断即可得.【详解】解:①两条平行线被第三条直线所截,同位角相等,则原说法错误,是假命题;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,则原说法错误,是假命题;③过直线外一点有且只有一条直线与这条直线平行,则原说法错误,是假命题;④在同一平面内,过一点有且只有一条直线与已知直线垂直,则原说法正确,是真命题;综上,假命题的个数是3个,故选:C.【点睛】本题考查了平行线的判定与性质、垂直的性质,熟练掌握各性质是解题关键.4、D【分析】设首次重合需要的时间为t秒,则OE比OF要多旋转120゜+75゜,由此可得方程,解方程即可.【详解】∵∠BOD=∠AOC=30゜,OE⊥AB∴∠EOD=∠EOB+∠BOD=90゜+30゜=120゜,∠AOD=180゜ - ∠AOC=150゜∵OF平分∠AOD∴∴∠EOD+∠DOF=120゜+75゜设OE、OF首次重合需要的时间为t秒,则由题意得:18t−3t=120+75解得:t=13即射线OE,OF重合时,至少需要的时间是13秒故选:D【点睛】本题考查了角平分线的性质,补角的含义,垂直的定义,角的和差运算,运用了方程思想来解决,本题的实质是行程问题中的追及问题.5、B【分析】根据平行线的判定方法,逐项判断即可.【详解】解:、和是一对内错角,当时,可判断,故不符合题意;、和是邻补角,当时,不能判定,故符合题意;、和是一对同位角,当时,可判断,故不合题意;、和是一对同旁内角,当时,可判断,故不合题意;故选B.【点睛】本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.6、A【分析】根据命题的定义分别进行判断即可.【详解】解:①若∠1=60°,∠2=60°,则∠1=∠2,是命题,符合题意;②同位角相等吗?是疑问句,不是命题,不符合题意;③画线段AB=CD,没有对事情作出判断,不是命题,不符合题意;④如果a>b,b>c,那么a>c,是命题,符合题意;⑤直角都相等,是命题,符合题意,命题有①④⑤.故选:A.【点睛】本题考查了命题与定理:判断事物的语句叫命题,命题有题设与结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.7、D【分析】利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.【详解】解:A、若,则或,故A错误.B、当时,有,故B错误.C、两直线平行,同位角相等,故C错误.D、对顶角相等,D正确.故选:D .【点睛】本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.8、A【分析】由同角或等角的余角相等可判断A,由平行线的性质可判断B,由邻补角的定义可判断C,通过举反例,比如 可判断D,从而可得答案.【详解】解:等角的余角相等,正确,是真命题,故A符合题意,两直线平行,同位角相等,所以同位角相等是假命题,故B不符合题意;互补的角不一定是邻补角,所以互补的角一定是邻补角是假命题,故C不符合题意;两个锐角的和不一定是钝角,所以两个锐角的和是钝角是假命题,故D不符合题意;故选:A【点睛】本题考查的是等角的余角相等,平行线的性质,邻补角的定义,锐角与钝角的含义,掌握判断命题真假的方法是解题的关键.9、D【分析】根据题意得:∠AON=40°,再由等角的余角相等,可得∠BON=∠AON=40°,即可求解.【详解】解:根据题意得:∠AON=40°,∵∠AOE=∠BOW,∠AON+∠AOE=90°,∠BON+∠BOW=90°,∴∠BON=∠AON=40°,∴轮船B在货轮的北偏西40°方向.故选:D【点睛】本题主要考查了余角的性质,方位角,熟练掌握等角的余角相等是解题的关键.10、A【分析】根据余角的定义即可得.【详解】由余角定义得∠α的余角为90°减去55°即可.解:由余角定义得∠α的余角等于90°﹣55°=35°.故选:A.【点睛】本题考查了余角的定义,熟记定义是解题关键.二、填空题1、【分析】根据,可得,再根据对顶角相等即可求出的度数.【详解】解:∵,∴∴∵∴故答案为:【点睛】本题主要考查了邻补角、对顶角的相关知识,熟练运用邻补角、对顶角的相关知识是解答此题的关键.2、或【分析】设为∠1和为∠2,根据图形可证得两角相等或互补,再利用方程建立等量关系求解即可.【详解】解:设的度数为,则的度数为,如图1,和互相平行,可得:∠2=∠3,同理:∠1=∠3,∴∠2=∠1,∴当两角相等时:,解得:, 如图2,和互相平行,可得:∠2+∠3=,而和互相平行,得∠1=∠3,∴∠2+∠1=,∴当两角互补时:,解得:,,故填:或.【点睛】本题考查平行线的性质和方程的应用,分类讨论思想是关键.3、【分析】先根据平行线的性质得到,结合已知∠EFG+∠EGD=150°,解得∠EGD=,再根据折叠的性质解得,结合两直线平行,同旁内角互补得到,据此整理得,进而解题.【详解】解:∠EFG+∠EGD=150°,∠EGD=折叠故答案为:.【点睛】本题考查折叠的性质、平行线的性质等知识,两直线平行,同旁内角互补,掌握相关知识是解题关键.4、68【分析】根据平行线的性质,得出,根据平行线的判定,得出,即可得到,进而得到的度数.【详解】解:∵练习本的横隔线相互平行,,∵要使,∴,又,,即, 故答案为:68.
【点睛】本题主要考查了平行线的性质与判定条件,解题时注意:两直线平行,同位角相等;同旁内角互补,两直线平行.5、108°【分析】首先根据邻补角的定义得到∠BOC,然后由角平分线的定义求得∠COD即可.【详解】解:∵∠1=36°,∴∠COB=180°-36°=144°,∵OD平分∠BOC,∴∠COD=∠BOC=×144°=72°,∴∠AOD=∠1+∠COD=36°+72°=108°.故答案为:108°.【点睛】本题主要考查角平分线及邻补角,角的和差,熟练掌握邻补角及角平分线的定义是解题的关键.三、解答题1、(1)∠AOD=36°,∠BOD=144°;(2)∠BOE =54°【解析】【分析】(1)先由的度数是的4倍,得到∠BOD=4∠AOD,再由邻补角互补得到∠AOD+∠BOD=180°,由此求解即可;(2)根据垂线的定义可得∠DOE=90°,则∠BOE=∠BOD-∠DOE=54°.【详解】解:(1)∵的度数是的4倍,∴∠BOD=4∠AOD,又∵∠AOD+∠BOD=180°,∴5∠AOD=180°,∴∠AOD=36°,∴∠BOD=144°;(2)∵OE⊥CD,∴∠DOE=90°,∴∠BOE=∠BOD-∠DOE=54°.【点睛】本题主要考查了垂线的定义,邻补角互补,熟练掌握邻补角互补是解题的关键.2、60°【解析】【分析】由CD⊥AB,FE⊥AB,则,则∠2=∠4,从而证得,得∠B=∠ADG,则答案可解.【详解】解:CD⊥AB于D,FE⊥AB于E,∴,∴∠2=∠4,又∵∠1=∠2,∴∠1=∠4,∴,∴.【点睛】本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.3、180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线的定义;;两直线平行,内错角相等【解析】【分析】由AB与CD平行,利用两直线平行同旁内角互补求出∠BCD度数,由CA为角平分线,利用角平分线定义求出∠2的度数,再利用两直线平行内错角相等即可确定出∠1的度数.【详解】证明:∵AB∥CD,(已知)∴∠B+∠BCD=180°,(两直线平行同旁内角互补)∵∠B=120°(已知),∴∠BCD=60°.又CA平分∠BCD(已知),∴∠2=30°,(角平分线定义).∵AB∥CD(已知),∴∠1=∠2=30°.(两直线平行内错角相等).故答案为:180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线定义;∠2;两直线平行,内错角相等.【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.4、∠FBG;两直线平行,同位角相等;等量代换;∠EAC;∠FBD;AC;BD;同位角相等,两直线平行【解析】【分析】由平行线的性质得∠EAB=∠FBD+∠2,再证∠1=∠2,然后由平行线的判定即可得出结论.【详解】∵AE∥BF,∴∠EAB=∠FBG(两直线平行,同位角相等).∵AC⊥AE,BD⊥BF,∴∠EAC=90°,∠FBD=90°.∴∠EAC=∠FBD(等量代换),∴∠EAB﹣∠EAC=∠FBG﹣∠FBD,即∠1=∠2.∴AC∥BD(同位角相等,两直线平行).故答案为:∠FBG;两直线平行,同位角相等;等量代换;∠AEC,∠FBD;AC,BD,同位角相等,两直线平行.【点睛】本题考查平行线的判定与性质,掌握平行线的判定与性质是解题的关键.5、(1);(2)相等,理由见解析;(3)∠AOB越来越大(4)见解析【解析】【分析】(1)根据∠AOC=90°,∠DOC=29°,求出∠AOD的度数,然后即可求出∠AOB的度数;(2)根据直角和等式的性质可得,∠AOD=∠BOC;(3)根据∠AOD+∠DOC+∠DOC+∠BOC=180°,可得∠AOB+∠DOC=180°,进而得到∠DOC变小∠AOB变大,若∠DOC越来越大,则∠AOB越来越小.(4)首先以OE为边,在∠EOF外画∠GOE=90°,再以OF为边在∠EOF外画∠HOF=90°,即可得到∠HOG=∠EOF.【详解】解:(1)因为,∠AOC=∠DOB=90°,∠DOC=29°所以,∠COB=90°﹣29°=61°,所以,∠AOB=90°+61°=151°,(2)相等的角有:∠AOC=∠DOB=90°,∠AOD=∠BOC;因为∠AOD=∠AOC-∠DOC=∠DOB-∠DOC=∠COB所以∠AOD=∠BOC;如果∠DOC≠29°,他们还会相等;(3)因为∠AOB=∠AOC+∠DOB-∠DOC=180°-∠DOC所以当∠DOC越来越小,则∠AOB越来越大;(4)如图,画∠HOF=∠GOE=90°,则∠HOG=∠EOF即,∠HOG为所画的角.【点睛】本题考查了余角和补角,以及角的计算,是基础题,准确识图是解题的关键.
相关试卷
这是一份初中北京课改版第七章 观察、猜想与证明综合与测试练习题,共24页。试卷主要包含了下列命题中,为真命题的是,若的补角是125°,则的余角是,如图,C,下列说法中正确的个数是等内容,欢迎下载使用。
这是一份2020-2021学年第七章 观察、猜想与证明综合与测试同步练习题,共21页。
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试课堂检测,共23页。试卷主要包含了一个角的补角比这个角的余角大.,如图,直线AB,下列语句中,错误的个数是,下列语句中,是命题的是等内容,欢迎下载使用。