终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    精品解析2022年最新京改版七年级数学下册第七章观察、猜想与证明章节训练试卷(含答案详细解析)

    立即下载
    加入资料篮
    精品解析2022年最新京改版七年级数学下册第七章观察、猜想与证明章节训练试卷(含答案详细解析)第1页
    精品解析2022年最新京改版七年级数学下册第七章观察、猜想与证明章节训练试卷(含答案详细解析)第2页
    精品解析2022年最新京改版七年级数学下册第七章观察、猜想与证明章节训练试卷(含答案详细解析)第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试巩固练习

    展开

    这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试巩固练习,共19页。试卷主要包含了如图,直线AB∥CD,直线AB等内容,欢迎下载使用。
    京改版七年级数学下册第七章观察、猜想与证明章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点在直线上,,若,则的大小为(    A.30° B.40° C.50° D.60°2、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于(    A.40° B.36° C.44° D.100°3、若的补角是125°,则的余角是(    A.90° B.54° C.36° D.35°4、如图,直线ABCD,直线ABCD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为(       A.30° B.40° C.50° D.60°5、如图,已知直线相交于O平分,则的度数是(    A. B. C. D.6、将一副三角板按如图所示位置摆放,已知∠α=30°14′,则∠β的度数为(  )A.75°14′ B.59°86′ C.59°46′ D.14°46′7、一副直角三角板如图放置,点CFD的延长线上,ABCF,∠F=∠ACB=90°,∠A=60°,则∠DBC的度数为( )A.45° B.25° C.15° D.20°8、如图,直线l1l2,直线l3l1l2分别相交于点ACBCl3l1于点B,若∠2=30°,则∠1的度数为(  )A.30° B.40° C.50° D.60°9、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为(  )A.164°12' B.136°12' C.143°88' D.143°48'10、下列有关“线段与角”的知识中,不正确的是(    A.两点之间线段最短 B.一个锐角的余角比这个角的补角小C.互余的两个角都是锐角 D.若线段,则是线段的中点第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、若∠A=20°18',则∠A的补角的大小为__________.2、已知∠1=71°,则∠1的补角等于__________度.3、已知:如图,直线ABCD被直线GH所截,,求证: ABCD.完成下面的证明:证明:∵AB被直线GH所截,___________∴______________(________)(填推理的依据).4、如图,AC平分∠DAB,∠1=∠2,试说明证明:∵AC平分∠DAB(_______),∴∠1=∠______(________),又∵∠1=∠2(________),∴∠2=∠______(________),AB______(________).5、如图,过直线AB上一点O作射线OC,∠BOC=29°38′,OD平分∠AOC,则∠DOC的度数为 _____.三、解答题(5小题,每小题10分,共计50分)1、综合与实践【问题情境】利用旋转三角尺开展数学活动,探究体会角在旋转过程中的变化.【操作发现】如图①,将一个45°角的直角三角形三角板ABO的顶点O放在直线OD上的O处,斜边OA在直线OD上,延长BOC(1)如图②,将图①中的三角板ABO绕着点O逆时针旋转90°后得到△O,此时∠BO=         °,OA平分∠        【实践探究】(2)如图③,将图②中的三角板绕点O逆时针继续旋转一定角度,使OD在∠内部,且∠DOC=45°,请探究:①∠1与∠3之间的数量关系为         理由如下:(请利用图中的字母和数字完成证明过程)因为∠DOC=45°,所以∠2+∠3=45°.又因为∠        +∠2=45°,所以∠2+∠       =∠        +∠2.所以                     ②∠1的补角有      个,分别为                      ③∠2的余角为               2、如图,已知BCDE相交于点O,给出以下三个判断:①ABDE;②BCEF;③∠B=∠E.请你以其中两个判断作为条件,另外一个判断作为结论,写出所有的命题,指出这些命题是真命题还是假命题,并选择其中的一个真命题加以证明.3、已知∠α=76°42',∠β=41°41'.求:(1)∠β的余角;(2)∠α与∠β的2倍的和.4、如图,直线ABCD相交于点O,∠EOC90°,OF是∠AOE的角平分线,∠COF34°,求∠BOD的度数.5、如图,直线ABCD相交于点OOC平分∠BOEOFCD,垂足为点O(1)写出∠AOF的一个余角和一个补角.(2)若∠BOE=60°,求∠AOD的度数.(3)∠AOF与∠EOF相等吗?说明理由. ---------参考答案-----------一、单选题1、D【分析】根据补角的定义求得∠BOC的度数,再根据余角的定义求得∠BOD的度数.【详解】解:∵∴∠BOC=180°-150°=30°,,即∠COD=90°,∴∠BOD=90°-30°=60°,故选:D【点睛】本题考查了补角和余角的计算,熟练掌握补角和余角的定义是解题的关键.2、A【分析】首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.【详解】∵∠1=40°,∠2=40°,∴∠1=∠2,PQMN∴∠4=180°﹣∠3=40°,故选:A.【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.3、D【分析】根据题意,得=180°-125°的余角是90°-(180°-125°)=125°-90°,选择即可.【详解】的补角是125°=180°-125°的余角是90°-(180°-125°)=125°-90°=35°故选D【点睛】本题考查了补角,余角的计算,正确列出算式是解题的关键.4、C【分析】由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.【详解】解:由题意,∵∠BMN与∠AME是对顶角,∴∠BMN=∠AME=130°,ABCD∴∠BMN+∠DNM=180°,∴∠DNM=50°;故选:C.【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.5、C【分析】先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.【详解】解:∵OA平分∠EOC,∠EOC=100°,∴∠AOCEOC=50°,∴∠BOC=180°﹣∠AOC=130°.故选:C.【点睛】本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.6、C【分析】观察图形可知,∠β=180°-90°-∠α,代入数据计算即可求解.【详解】解:∠β=180°﹣90°﹣∠α=90°﹣30°14′=59°46′.故选:C.【点睛】本题考查了余角和补角,准确识图,得到∠β=180°-90°-∠α是解题的关键.7、C【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】解:由题意可得:∠EDF=45°,∠ABC=30°,ABCF∴∠ABD=∠EDF=45°,∴∠DBC=45°-30°=15°.故选:C【点睛】此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键.8、D【分析】根据平行线的性质和垂直的定义解答即可.【详解】解:∵BCl3l1于点B∴∠ACB=90°,∵∠2=30°,∴∠CAB=180°−90°−30°=60°,l1l2∴∠1=∠CAB=60°.故选:D【点睛】此题考查平行线的性质,关键是根据平行线的性质解答.9、D【分析】根据邻补角及角度的运算可直接进行求解.【详解】解:由图可知:∠AOC+∠BOC=180°,∵∠COB=36°12',∴∠AOC=180°-∠BOC=143°48',故选D.【点睛】本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.10、D【分析】根据线段的性质及余角补角的定义解答.【详解】解:两点之间线段最短,故A选项不符合题意;一个锐角的余角比这个角的补角小,故B选项不符合题意;互余的两个角都是锐角,故C选项不符合题意;若线段,则不一定是线段的中点,故D选项符合题意;故选:D.【点睛】此题考查线段的性质,余角与补角的定义,熟记定义及线段的性质是解题的关键.二、填空题1、159°42'(或159.7°)【分析】根据补角的定义可直接进行求解.【详解】解:由∠A=20°18',则∠A的补角为故答案为159°42'.【点睛】本题主要考查补角,熟练掌握求一个角的补角是解题的关键.2、109【分析】两角互为补角,和为180°,那么计算180°-∠1可求补角.【详解】解:设所求角为∠α∵∠α+∠1=180°,∠1=71,∴∠α=180°-71=109°.故答案为:109【点睛】此题考查的是角的性质,两角互余和为90°,互补和为180°.3、3    180°    AB    CD    同旁内角互补,两直线平行    【分析】先根据对顶角相等求得∠3的度数,进而得到∠2+∠3=180°,即可判定ABCD【详解】证明:∵AB被直线GH所截,∠1=112°,∴∠1=∠3=112°∵∠2=68°,∴∠2+∠3=180°,ABCD,(同旁内角互补,两直线平行)故答案为∠3,180°,ABCD,同旁内角互补,两直线平行.【点睛】本题主要考查了平行线的判定,两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.4、已知    3    角平分线的定义    已知    3    等量代换    CD    内错角相等,两直线平行    【分析】根据平行线证明对书写过程的要求和格式填写即可.【详解】证明:∵AC平分∠DAB(已知),∴∠1=∠  3  (角平分线的定义),又∵∠1=∠2(已知),∴∠2=∠  3  (等量代换),ABCD (内错角相等,两直线平行).故答案为:已知;3;角平分线的定义;已知;3;等量代换;CD;内错角相等,两直线平行【点睛】本题主要考查平行线证明的书写,正确的逻辑推理和书写格式是解题的关键.5、【分析】先根据邻补角互补求出∠AOC=150°22′,再由角平分线的定义求解即可.【详解】解:∵∠BOC=29°38′,∠AOC+∠BOC=180°,∴∠AOC=150°22′,OD平分∠AOC故答案为:【点睛】本题主要考查了邻补角互补,角度制的计算,角平分线的定义,熟知相关知识是解题的关键.三、解答题1、(1)90,BO;(2)①∠1=∠3,1,3,1,∠1=∠3;②2,∠AOA'、∠BOB';③∠【解析】【分析】(1)图中三角板ABO绕着点O逆时针旋转90°后得到△O,可知∠BO即为旋转角度,即∠BO=90°;已知∠AOB=45°,可知∠AO=45°,即OA平分∠BO(2)①根据所给出的证明过程进行填空即可;②由①可知,∠1=∠3,∠1+∠AOA'=180°,∠3+∠BOB=180°,可知∠1的补角有2个,分别为∠AOA'、∠BOB③根据图形进行转化即可得出∠2的余角.【详解】解:(1)此时∠BO=  90  °,OA平分∠ BO  (2)①∠1=∠2(相等)理由如下:因为∠DOC=45°,所以∠2+∠3=45°.又因为∠  1   +∠2=45°所以∠2+∠  3   =∠  1   +∠2所以∠1=∠3②由图可知,∠1+∠AOA'=180°,∠3+∠BOB=180°,∵∠1=∠3,∴∠1的补角有2个,分别为∠AOA'、∠BOB'③由图可知,∠2+∠1=45°,∴∠2=45°-∠1,即∠2的余角为:90°-(45°-∠1)=45°+∠1=45°+∠3=∠故:∠2的余角为∠【点睛】本题主要考查的是角度中的基础定义,熟练掌握其中的定义是解本题的关键.2、ABDEBCEF,则∠B=∠E,此命题为真命题,见解析.【解析】【分析】三个判断任意两个为条件,另一个为结论可写三个命题,然后根据平行线的判定与性质判断这些命题的真假.【详解】(1)若ABDEBCEF,则∠B=∠E,此命题为真命题.(2)若ABDE,∠B=∠E,则BCEF,此命题为真命题.(3)若∠B=∠EBCEF,则ABDE,此命题为真命题.以第一个命题为例证明如下:ABDE∴∠B=∠DOC.BCEF∴∠DOC=∠E∴∠B=∠E【点睛】本题主要是考查了平行线的判定和性质,熟练掌握平行线的判定和性质求解该类题目的关键.3、(1)48°19';(2)160°4'【解析】【分析】(1)根据互为余角的两个角的和为90度可得的余角,将代入计算即可;(2)将代入,然后计算即可.【详解】解:(1)的余角(2)【点睛】本题考查了余角与补角,以及度分秒的换算,解题的关键是掌握如果两个角的和等于(直角),就说这两个角互为余角.即其中一个角是另一个角的余角;度、分、秒是常用的角的度量单位.1度分,即,1分秒,即4、【解析】【分析】根据可得OF是∠AOE的角平分线,可得,所,再根据对顶角相等,即可求解.【详解】解:∵OF是∠AOE的角平分线,【点睛】此题考查了角平分线的有关计算,解题的关键是掌握角平分线的定义以及角之间的和差关系.5、(1)∠AOF的余角是:∠COE或∠BOC或∠AOD;∠AOF的补角是∠BOF;(2)30°;(3)∠AOF=∠EOF,理由见解析【解析】【分析】(1)由OCCD,可得∠DOF=90°,则∠AOF+∠AOD=90°,由对顶角相等得∠BOC=∠AOD,则∠AOF+∠BOC=90°,由OC平分∠BOE,可得∠COE=∠BOC,∠AOF+∠COE=90°;由∠AOF+∠BOF=180°,可得∠AOF的补角是∠BOF(2)由OC平分∠BOE,∠BOE=60°,可得∠BOC=30°,再由∠AOD=∠BOC,即可得到∠AOD=30°;(3)由(1)可得∠AOD=∠BOC=∠COE,再由OFOC,得到∠DOF=∠COF=90°,则∠AOD+∠AOF=∠EOF+∠COE=90°,即可推出∠AOF=∠EOF【详解】解:(1)∵OCCD∴∠DOF=90°,∴∠AOF+∠AOD=90°,又∵∠BOC=∠AOD∴∠AOF+∠BOC=90°,OC平分∠BOE∴∠COE=∠BOC∴∠AOF+∠COE=90°;∴∠AOF的余角是,∠COE,∠BOC,∠AOD∵∠AOF+∠BOF=180°,∴∠AOF的补角是∠BOF(2)∵OC平分∠BOE,∠BOE=60°,∴∠BOC=30°,又∵∠AOD=∠BOC∴∠AOD=30°;(3)∠AOF=∠EOF,理由如下:由(1)可得∠AOD=∠BOC=∠COEOFOC∴∠DOF=∠COF=90°,∴∠AOD+∠AOF=∠EOF+∠COE=90°,∴∠AOF=∠EOF【点睛】本题主要考查了与余角、补角有关的计算,等角的余角相等,垂线的定义,解题的关键在于熟知余角与补角的定义:如果两个角的相加的度数为90度,那么这两个角互余,如果两个角相加的度数为180度,那么这两个角互补. 

    相关试卷

    初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试习题:

    这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试习题,共23页。试卷主要包含了如图,下列命题中,真命题是等内容,欢迎下载使用。

    初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练:

    这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练,共22页。试卷主要包含了下列语句中,错误的个数是,如图,下列命题中,真命题是等内容,欢迎下载使用。

    初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试综合训练题:

    这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试综合训练题,共19页。试卷主要包含了下列命题是假命题的有,如图,直线AB∥CD,直线AB,以下命题是假命题的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map