北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后练习题
展开京改版七年级数学下册第七章观察、猜想与证明章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列命题中,真命题是( )
A.两条直线被第三条直线所截,内错角相等 B.相等的角是对顶角
C.在同一平面内,垂直于同一条直线的两条直线平行 D.同旁内角互补
2、下列语句中,错误的个数是( )
①直线AB和直线BA是两条直线;
②如果,那么点C是线段AB的中点;
③两点之间,线段最短;
④一个角的余角比这个角的补角小.
A.1个 B.2个 C.3个 D.4个
3、已知一个角等于它的补角的5倍,那么这个角是( )
A.30° B.60° C.45° D.150°
4、∠A的余角是30°,这个角的补角是( )
A.30° B.60° C.120° D.150°
5、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为( )
A.西偏北50° B.北偏西50° C.东偏北30° D.北偏东30°
6、将一副三角板按如图所示位置摆放,已知∠α=30°14′,则∠β的度数为( )
A.75°14′ B.59°86′ C.59°46′ D.14°46′
7、如果两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别是( )
A.48°,72° B.72°,108°
C.48°,72°或72°,108° D.80°,120°
8、下列命题中,为真命题的是( )
A.若,则 B.若,则
C.同位角相等 D.对顶角相等
9、如图,,交于点,,,则的度数是( )
A.34° B.66° C.56° D.46°
10、如果一个角的补角是这个角的4倍,那么这个角为( )
A.36° B.30° C.144° D.150°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,点为直线上一点,.
(1)__________________°,__________________°;
(2)的余角是__________________,的补角是___________________.
2、已知∠1与∠2互余,∠3与∠2互余,则∠1_____∠3.(填“>”,“=”或“<”)
3、如图,AB∥CD,∠EGB=50°,则∠CHG的大小为 _____.
4、如图,,.则图中与互补的角是______.
5、已知三条不同的直线a,b,c在同一平面内,下列四个命题:
①如果ab,a⊥c,那么b⊥c;
②如果ba,ca,那么bc;
③如果b⊥a,c⊥a,那么b⊥c;
④如果b⊥a,c⊥a,那么bc.
其中正确的是__.(填写序号)
三、解答题(5小题,每小题10分,共计50分)
1、如图,点A、B、C在8×5网格的格点上,每小方格是边长为1个单位长度的正方形.请按要求画图,并回答问题:
(1)延长线段AB到点D,使BD=AB;
(2)过点C画CE⊥AB,垂足为E;
(3)点C到直线AB的距离是 个单位长度;
(4)通过测量 = ,并由此结论可猜想直线BC与AF的位置关系是 .
2、如图,直线AB,CD相交于点O,OM⊥AB于点O,ON⊥CD于点O.
(1)试说明∠1=∠2;
(2)若∠BOC=4∠2,求∠AOC的大小.
3、完成下面的证明
如图,点B在AG上,AGCD,CF平分∠BCD,∠ABE=∠FCB,BE⊥AF点E.
求证:∠F=90°.
证明:∵AGCD(已知)
∴∠ABC=∠BCD(____)
∵∠ABE=∠FCB(已知)
∴∠ABC﹣∠ABE=∠BCD﹣∠FCB
即∠EBC=∠FCD
∵CF平分∠BCD(已知)
∴∠BCF=∠FCD(____)
∴____=∠BCF(等量代换)
∴BECF(____)
∴____=∠F(____)
∵BE⊥AF(已知)
∴____=90°(____)
∴∠F=90°.
4、如图,直线AB,CD,EF相交于点O,OG⊥CD.
(1)已知∠AOC=38°12',求∠BOG的度数;
(2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.
5、如图1所示,MN//PQ,∠ABC与MN,PQ分别交于A、C两点
(1)若∠MAB=∠QCB=20°,则B的度数为 度.
(2)在图1分别作∠NAB与∠PCB的平分线,且两条角平分线交于点F.
①依题意在图1中补全图形;
②若∠ABC=n°,求∠AFC的度数(用含有n的代数式表示);
(3)如图2所示,直线AE,CD相交于D点,且满足∠BAM=m∠MAE, ∠BCP=m∠DCP,试探究∠CDA与∠ABC的数量关系
---------参考答案-----------
一、单选题
1、C
【分析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
解:A、错误,当被截的直线平行时形成的同位角才相等;
B、错误,对顶角相等但相等的角不一定是对顶角;
C、正确,必须强调在同一平面内;
D、错误,两直线平行同旁内角才互补.
故选:C.
【点睛】
主要考查命题的真假判断与平行线的性质、对顶角的特点,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
2、B
【分析】
根据直线的定义、线段中点的定义、线段的性质、余角与补角的定义分别判断.
【详解】
解:①直线AB和直线BA是同一条直线,故该项符合题意;
②如果,那么点C不一定是线段AB的中点,故该项符合题意;
③两点之间,线段最短,故该项不符合题意;
④一个角的余角比这个角的补角小,故该项不符合题意,
故选:B.
【点睛】
此题考查了直线的定义、线段中点的定义、线段的性质、余角与补角的定义,属于基础定义题型.
3、D
【分析】
列方程求出这个角即可.
【详解】
解:设这个角为x,
列方程得:x=5(180°−x)
解得x=150°.
故选:D.
【点睛】
本题考查了补角,若两个角的和等于180°,则这两个角互补,列方程求出这个角是解题的关键.
4、C
【分析】
根据一个角的补角比这个角的余角大列式计算即可得解.
【详解】
解:一个角的余角是,
这个角的补角是.
故选:C.
【点睛】
本题考查了余角和补角,解题的关键是熟记概念并理清余角和补角的关系.
5、D
【分析】
由,证明,再利用角的和差求解 从而可得答案.
【详解】
解:如图,标注字母, ,
∴,
此时的航行方向为北偏东30°,
故选:D.
【点睛】
本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.
6、C
【分析】
观察图形可知,∠β=180°-90°-∠α,代入数据计算即可求解.
【详解】
解:∠β=180°﹣90°﹣∠α
=90°﹣30°14′
=59°46′.
故选:C.
【点睛】
本题考查了余角和补角,准确识图,得到∠β=180°-90°-∠α是解题的关键.
7、B
【分析】
根据题意可得这两个角互补,设其中一个角为x,则另一个角为,由两个角之间的数量关系列出一元一次方程,求解即可得.
【详解】
解:∵两个角的两边两两互相平行,
∴这两个角可能相等或者两个角互补,
∵一个角的等于另一个角的,
∴这两个角互补,
设其中一个角为x,则另一个角为,
根据题意可得:,
解得:,,
故选:B.
【点睛】
题目主要考查平行线的性质、角的数量关系、一元一次方程等,理解题意,列出方程是解题关键.
8、D
【分析】
利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.
【详解】
解:A、若,则或,故A错误.
B、当时,有,故B错误.
C、两直线平行,同位角相等,故C错误.
D、对顶角相等,D正确.
故选:D .
【点睛】
本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.
9、C
【分析】
由余角的定义得出的度数,由两直线平行内错角相等即可得出结论.
【详解】
解:∵,,
∴,
∵,
∴,
故选:C
【点睛】
本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.
10、A
【分析】
设这个角为 ,则它的补角为 ,根据“一个角的补角是这个角的4倍”,列出方程,即可求解.
【详解】
解:设这个角为 ,则它的补角为 ,根据题意得:
,
解得: .
故选:A
【点睛】
本题主要考查了补角的性质,一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.
二、填空题
1、35 55 与
【分析】
(1)由,可得,,所以,,,所以,已知的度数,即可得出与的度数;
(2)由(1)可得的余角是与,要求的补角,即要求的补角,的补角是.
【详解】
解:(1),,
,,
,,,
,
,
,;
(2)由(1)可得的余角是与,
,
的补角是,
的补角是.
故答案为:(1)35,55;(2)与,.
【点睛】
本题主要考查余角、补角以及垂直的定义,熟记补角、余角以及垂直的定义是解题关键.
2、=
【分析】
根据等(同)角的余角相等解答即可.
【详解】
解:∵∠1与∠2互余,∠3与∠2互余,
∴∠1=∠3,
故答案为:=.
【点睛】
本题考查余角,熟知同(等)角的余角相等是解答的关键.
3、130°
【分析】
根据平行线的性质可得∠EHD=∠EGB=50°,再利用邻补角的性质可求解.
【详解】
解:∵AB∥CD,∠EGB=50°,
∴∠EHD=∠EGB=50°,
∴∠CHG=180°﹣∠EHD=130°.
故答案为:130°.
【点睛】
本题主要考查平行线的性质,邻补角,属于基础题.
4、
【分析】
利用互补的定义得出与互补的角.
【详解】
解:∵,,
∴,,
∴,
即
∴与互补的角是:
故答案为:
【点睛】
本题考查了补角的概念和垂直的定义,如果两个角的和等于180°(平角),就说这两个角互为补角,简称“互补”,即其中一个角是另一个角的补角.
5、①②④
【分析】
根据两直线的位置关系一一判断即可.
【详解】
解:在同一个平面内,①如果ab,a⊥c,那么b⊥c,正确;
②如果ba,ca,那么bc,正确;
③如果b⊥a,c⊥a,那么bc,错误;
④如果b⊥a,c⊥a,那么bc,正确;
故答案为:①②④.
【点睛】
本题考查两直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行.
三、解答题
1、(1)见解析;(2)见解析;(3)2;(4),平行
【解析】
【分析】
(1)根据网格的特点和题意,延长到,使;
(2)根据网格是正方形,垂线的定义,画出,垂足为,点在线段的延长线上,
(3)点C到直线AB的距离即的长,网格的特点即可数出的长;
(4)根据同位角相等,两直线平行,或内错角相等,两直线平行即可得,即可知测量的角度
【详解】
解:(1)(2)如图所示,
(3)由网格可知
即点C到直线AB的距离是个单位长度
故答案为:2
(4)通过测量,可知
故答案为:,平行
【点睛】
本题考查了画线段,画垂线,平行线的性质与判定,点到直线的距离,掌握以上知识是解题的关键.
2、(1)见解析;(2)60°
【解析】
【分析】
(1)利用同角的余角相等解答即可得出结论;
(2)利用(1)的结论,等量代换可得∠BOC=4∠1,利用∠BOM=90°=3∠1,求得∠1的度数,则∠AOC=90°﹣∠1.
【详解】
解:(1)∵OM⊥AB,ON⊥CD,
∴∠AOM=∠CON=90°,
∴∠AOC+∠1=90°,∠AOC+∠2=90°,
∴∠1=∠2.
(2)∵OM⊥AB,
∴∠BOM=90°.
∵∠1=∠2,∠BOC=4∠2,
∴∠BOC=4∠1.
∴∠BOM=∠BOC﹣∠1=4∠1﹣∠1=3∠1,
即3∠1=90°,
∴∠1=30°.
∴∠AOC=∠AOM﹣∠1=90°﹣30°=60°.
【点睛】
本题考查了对顶角、垂线性质、余角等基本几何知识,属于基础题.熟练掌握基本几何公理、基本几何概念是关键.
3、两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义
【解析】
【分析】
根据平行线的性质得到∠ABC=∠BCD,再根据角平分线的定义进而得到∠EBC=∠BCF,即可判定BE∥CF,根据平行线的性质得出∠BEF=∠F,再根据垂直的定义即可得解.
【详解】
证明:∵AG∥CD(已知),
∴∠ABC=∠BCD(两直线平行,内错角相等),
∵∠ABE=∠FCB(已知),
∴∠ABC﹣∠ABE=∠BCD﹣∠FCB,
即∠EBC=∠FCD,
∵CF平分∠BCD(已知),
∴∠BCF=∠FCD(角平分线的定义),
∴∠EBC=∠BCF(等量代换),
∴BE∥CF(内错角相等,两直线平行),
∴∠BEF=∠F(两直线平行,内错角相等),
∵BE⊥AF(已知),
∴∠BEF=90°(垂直的定义),
∴∠F=90°.
故答案为:两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义.
【点睛】
本题主要考查了平行线的性质与判定,角平分线的定义,垂直的定义,熟练掌握相关知识是解题的关键.
4、(1)51°48′;(2)OG是∠EOB的平分线,理由见解析
【解析】
【分析】
(1)根据互为余角的意义和对顶角的性质,可得∠AOC=∠BOD=38°12′,进而求出∠BOG;
(2)求出∠EOG=∠BOG即可.
【详解】
解:(1)∵OG⊥CD.
∴∠GOC=∠GOD=90°,
∵∠AOC=∠BOD=38°12′,
∴∠BOG=90°﹣38°12′=51°48′,
(2)OG是∠EOB的平分线,
理由:
∵OC是∠AOE的平分线,
∴∠AOC=∠COE=∠DOF=∠BOD,
∵∠COE+∠EOG=∠BOG+∠BOD=90°,
∴∠EOG=∠BOG,
即:OG平分∠BOE.
【点睛】
本题主要考查角平分线的定义及余角,熟练掌握角平分线的定义及余角是解题的关键.
5、(1)40;(2)①见解析;②;(3)m∠CDA+∠ABC=180°
【解析】
【分析】
(1)作MN、PQ的平行线HG,根据两直线平行,内错角相等即可解答;
(2)①根据题意作图即可,②过F作 ,根据两直线平行,同旁内角互补和内错角相等即可解答;
(3)延长AE交PQ于点G,设∠MAE=x°,∠DCP=y°,知∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,∠BCQ=180°−my°,根据(1)中所得结论知∠ABC=mx°+180°−my°,即y°−x°= ,由MNPQ知∠MAE=∠DGP=x°,根据∠CDA=∠DCP−∠DGC可得答案.
【详解】
解:(1)作 ,
∵MN//PQ,
∴,
∴ ,
∴ ;
(2)①如图所示,
②过点F作 ,
∴ ,
∴ ,
∵ ,
∴ ,
∵
∴ ,
∴ ,
∵ ,
∴ ;
(3)延长AE交PQ于点G,
设∠MAE=x°,∠DCP=y°,则∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,
∴∠BCQ=180°−my°,
由(1)知,∠ABC=mx°+180°−my°,
∴y°−x°=,
∵MNPQ,
∴∠MAE=∠DGP=x°,
则∠CDA=∠DCP−∠DGC
=y°−x°
=,
即m∠CDA+∠ABC=180°.
【点睛】
本题主要考查平行线的性质,解题的关键是掌握平行线的性质和判定等知识点.
初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习题: 这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习题,共21页。试卷主要包含了下列命题是假命题的有,如图等内容,欢迎下载使用。
初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步测试题: 这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步测试题,共24页。试卷主要包含了如图,以下命题是假命题的是,若的余角为,则的补角为,下列说法正确的个数是等内容,欢迎下载使用。
北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习题: 这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习题,共24页。试卷主要包含了如图,,交于点,,,则的度数是,下列说法正确的个数是等内容,欢迎下载使用。