数学七年级下册第七章 观察、猜想与证明综合与测试课时练习
展开这是一份数学七年级下册第七章 观察、猜想与证明综合与测试课时练习,共23页。试卷主要包含了如图,直线AB,下列说法中正确的是,下列说法不正确的是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如所示各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
2、如图,已知AO⊥OC,OB⊥OD,∠COD=38°,则∠AOB的度数是( )
A.30º B.145º C.150º D.142º
3、如图所示,直线l1l2,∠1和∠2分别为直线l3与直线l1和l2相交所成角.如果∠1=52°,那么∠2=( )
A.138° B.128° C.52° D.152°
4、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )
A.40° B.36° C.44° D.100°
5、如图,直线AB、CD相交于点O,OE平分∠BOC,若∠BOD:∠BOE=1:2,则∠AOE的大小为( )
A.72° B.98°
C.100° D.108°
6、下列说法中正确的是( )
A.一个锐角的补角比这个角的余角大90° B.-a表示的数一定是负数
C.射线AB和射线BA是同一条射线 D.如果︱x︱=5,那么x一定是5
7、下列说法中正确的是( )
A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短
C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点
8、用反证法证明命题“在同一平面内,若 ,则 a∥c”时,首先应假设( )
A.a∥b B.b∥c C.a 与 c 相交 D.a 与 b
9、下列说法不正确的是( )
A.两点确定一条直线
B.经过一点只能画一条直线
C.射线AB和射线BA不是同一条射线
D.若∠1+∠2=90°,则∠1与∠2互余
10、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为( )
A.164°12' B.136°12' C.143°88' D.143°48'
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,,.则图中与互补的角是______.
2、如图,已知,且∠1=48°,则∠2=_____,∠3=_____,∠4=_____.
3、已知直线AB、CD相交于点O,且A、B和C、D分别位于点O两侧,OE⊥AB,,则____________.
4、如图所示,过点P画直线a的平行线b的作法的依据是___________.
5、如图,已知 AB∥CD∥EF,BC∥AD,AC 平分∠BAD,那么图中与∠AGE 相等的角(不包括∠AGE)有_____个.
三、解答题(5小题,每小题10分,共计50分)
1、已知:如图,直线相交于点,平分,若,求的度数.
2、如图,∠AOD = 130°,∠BOC:∠COD = 1:2,∠AOB是∠COD补角的.
(1)∠COD = _______ ;
(2)平面内射线OM满足∠AOM = 2∠DOM,求∠AOM的大小;
(3)将∠COD固定,并将射线OA,OB同时以2°/s的速度顺时针旋转,到OA与OD重合时停止.在旋转过程中,若射线OP为∠AOB的平分线,OQ为∠COD的平分线,当∠POQ+∠AOD=50°时,求旋转时间t(秒)的取值范围.
3、如图,已知∠AOC=90°,∠BOD=90°,∠BOC=38°19′,求∠AOD的度数.
4、如图,是的平分线,是的平分线.
(1)若,,求的度数;
(2)若与互补,且,求的度数.
5、填空,完成下列说理过程:如图,直线EF和CD相交于点O,∠AOB=90°,OC平分∠AOF,∠AOE=40°.求∠BOD的度数.
解:∵∠AOE=40°(已知)
∴∠AOF=180°﹣ (邻补角定义)
=180°﹣ °
= °
∵OC平分∠AOF(已知)
∴∠AOC∠AOF( )
∵∠AOB=90°(已知)
∴∠BOD=180°﹣∠AOB﹣∠AOC( )
=180°﹣90°﹣ °
= °
---------参考答案-----------
一、单选题
1、B
【分析】
根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.
【详解】
解:A.∠1与∠2没有公共顶点,不是对顶角;
B.∠1与∠2有公共顶点,并且两边互为反向延长线,是对顶角;
C.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;
D.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角.
故选:B.
【点睛】
本题主要考查了对顶角的定义,熟记对顶角的定义是解题的关键.
2、D
【分析】
根据垂直的定义得到∠AOC=∠DOB=90°,由互余关系得到∠BOC=52°,然后计算∠AOC+∠BOC即可.
【详解】
解:∵AO⊥OC,OB⊥OD,
∴∠AOC=∠DOB=90°,
而∠COD=38°,
∴∠BOC=90°-∠COD=90°-38°=52°,
∴∠AOB=∠AOC+∠BOC=90°+52°=142°.
故选:D.
【点睛】
本题考查了余角的概念:若两个,角的和为90°,那么这两个角互余.
3、B
【分析】
根据两直线平行同位角相等,得出∠1=∠3=52°.再由∠2与∠3是邻补角,得∠2=180°﹣∠3=128°.
【详解】
解:如图.
∵l1//l2,
∴∠1=∠3=52°.
∵∠2与∠3是邻补角,
∴∠2=180°﹣∠3=180°﹣52°=128°.
故选:B.
【点睛】
本题主要考查了平行线的性质、邻补角的定义,熟练掌握平行线的性质、邻补角的定义是解决本题的关键.
4、A
【分析】
首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.
【详解】
∵∠1=40°,∠2=40°,
∴∠1=∠2,
∴PQMN,
∴∠4=180°﹣∠3=40°,
故选:A.
【点睛】
本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
5、D
【分析】
根据角平分线的定义得到∠COE=∠BOE,根据邻补角的定义列出方程,解方程求出∠BOD,根据对顶角相等求出∠AOC,结合图形计算,得到答案.
【详解】
解:设∠BOD=x,
∵∠BOD:∠BOE=1:2,
∴∠BOE=2x,
∵OE平分∠BOC,
∴∠COE=∠BOE=2x,
∴x+2x+2x=180°,
解得,x=36°,即∠BOD=36°,∠COE=72°,
∴∠AOC=∠BOD=36°,
∴∠AOE=∠COE+∠AOC=108°,
故选:D.
【点睛】
本题考查的是对顶角、邻补角的概念,掌握对顶角相等、邻补角之和为180°是解题的关键.
6、A
【分析】
根据补角和余角的概念即可判断A选项;根据负数的概念即可判断B选项;根据射线的概念即可判断C选项;根据绝对值的意义即可判断D选项.
【详解】
解:A、设锐角的度数为x ,
∴这个锐角的补角为,这个锐角的余角为,
∴.
故选项正确,符合题意;
B、当时,,
∴-a表示的数不一定是负数,
故选项错误,不符合题意;
C、射线AB是以A为端点,沿AB方向延长的的射线,射线BA是以B为端点,沿BA方向延长的的射线,
∴射线AB和射线BA不是同一条射线,
故选项错误,不符合题意;
D、如果︱x︱=5,,
∴x不一定是5,
故选项错误,不符合题意,
故选:A.
【点睛】
此题考查了补角和余角的概念,负数的概念,射线的概念,绝对值的意义,解题的关键是熟练掌握以上概念和性质.
7、B
【分析】
根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.
【详解】
解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;
B.两点之间的所有连线中,线段最短,正确;
C.相等的角不一定是对顶角,故不符合题意;
D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;
故选:B.
【点睛】
本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.
8、C
【分析】
用反证法解题时,要假设结论不成立,即假设a与c不平行(或a与c相交).
【详解】
解:原命题“在同一平面内,若a⊥b,c⊥b,则a∥c”,
用反证法时应假设结论不成立,
即假设a与c不平行(或a与c相交).
故答案为:C.
【点睛】
此题考查了反证法证明的步骤:(1)假设原命题结论不成立;(2)根据假设进行推理,得出矛盾,说明假设不成立;(3)原命题正确.
9、B
【分析】
根据两点确定一条直线,即可判断A;根据过一点可以画无数条直线可以判断B;根据射线的表示方法即可判断C;根据余角的定义,可以判断D.
【详解】
解:A、两点确定一条直线,说法正确,不符合题意;
B、过一点可以画无数条直线,说法错误,符合题意;
C、射线AB和射线BA不是同一条射线,说法正确,不符合题意;
D、若∠1+∠2=90°,则∠1与∠2互余,说法正确,不符合题意;
故选B.
【点睛】
本题主要考查了两点确定一条直线,;过一点可以画无数条直线,射线的表示方法余角的定义,熟知相关知识是解题的关键.
10、D
【分析】
根据邻补角及角度的运算可直接进行求解.
【详解】
解:由图可知:∠AOC+∠BOC=180°,
∵∠COB=36°12',
∴∠AOC=180°-∠BOC=143°48',
故选D.
【点睛】
本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.
二、填空题
1、
【分析】
利用互补的定义得出与互补的角.
【详解】
解:∵,,
∴,,
∴,
即
∴与互补的角是:
故答案为:
【点睛】
本题考查了补角的概念和垂直的定义,如果两个角的和等于180°(平角),就说这两个角互为补角,简称“互补”,即其中一个角是另一个角的补角.
2、48° 132° 48°
【分析】
根据两直线平行内错角相等可求出∠2,根据两直线平行,同位角相等可求出∠4,同旁内角互补可求出∠3.
【详解】
解:∵ //,∠1=48°,
∴∠2=∠1=48°,
∵ //,∠1=48°,
∴∠4=∠1=48°,
∵ //,
∴∠3+∠4=180°
∴∠3=180°-∠4=180°-48°=132°
故答案为:48°;132°;48°
【点睛】
此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.
3、130°或50°
【分析】
根据题意作出图形,根据垂直的定义,互余与互补的定义,分类讨论即可
【详解】
①如图,
,
,
②如图,
,
,
综上所述,或
故答案为:130°或50°
【点睛】
本题考查了相交线所成角,对顶角相等,垂直的定义,求一个角的余角,补角,分类讨论是解题的关键.
4、内错角相等,两直线平行
【分析】
根据平行线的判定方法解决问题即可.
【详解】
解:由作图可知,
,
(内错角相等两直线平行),
故答案为:内错角相等,两直线平行.
【点睛】
本题考查作图,平行线的判定等知识,熟练掌握平行线的判定定理是解题的关键,属于中考常考题型.
5、5
【分析】
由AB∥CD∥EF,可得∠AGE=∠GAB=∠DCA;由BC∥AD,可得∠GAE=∠GCF;又因为AC平分∠BAD,可得∠GAB=∠GAE;根据对顶角相等可得∠AGE=∠CGF.所以图中与∠AGE相等的角有5个.
【详解】
解:∵AB∥CD∥EF,
∴∠AGE=∠GAB=∠DCA;
∵BC∥AD,
∴∠GAE=∠GCF;
又∵AC平分∠BAD,
∴∠GAB=∠GAE;
∵∠AGE=∠CGF.
∴∠AGE=∠GAB=∠DCA=∠CGF=∠GAE=∠GCF.
∴图中与∠AGE相等的角有5个
故答案为:5.
【点睛】
本题考查对顶角、邻补角及角平分线的定义和平行线的性质,根据题意仔细观察图形并找出全部答案是解题关键.
三、解答题
1、
【解析】
【分析】
先根据平角的定义和可得,再根据角平分线的定义可得,然后根据对顶角相等即可得.
【详解】
解:,
,
平分,
,
由对顶角相等得:.
【点睛】
本题考查了对顶角相等、角平分线的定义等知识点,熟练掌握角平分线的定义是解题关键.
2、(1);(2)∠AOM的大小为或(3)旋转时间t(秒)的取值范围为
【解析】
【分析】
(1),用分别表示出与的大小,利用角之间的关系,即可求解.
(2)分射线OM在∠AOD 的内部和外部两类情况进行讨论,利用角与角之间的关系,即可求出答案.
(3)先观察到,寻找临界情况,利用角的关系求出对应两种临界情况下的旋转角度,进而求出时间t(秒)的取值范围.
【详解】
(1)解:设:,
∠BOC:∠COD = 1:2,∠AOB是∠COD补角的.
,。
,
,
解得:,
故.
(2)解:当射线OM在∠AOD 的内部时,如下图所示:
∠AOD = 130°,且∠AOM = 2∠DOM,
当射线OM在∠AOD 的外部时,如下图所示:
∠AOD = 130°,且∠AOM = 2∠DOM,
故∠AOM的大小为或.
(3)解:有(1)可得:,
射线OP为∠AOB的平分线,OQ为∠COD的平分线,
,,
可以观察到:,
若要求解时间的取值范围,需要找到临界情况,
当与重合时,此时恰好有,, 如下图所示:
可以观察到,若与未重合之前,必有一定不满足∠POQ+∠AOD=50°,故此时的时间恰好取到最小值,
由题意可知:一共旋转了,故时间,
,
当与重合时,此时有,,
如下图所示:
若此时继续往下旋转,必有,一定不满足∠POQ+∠AOD=50°,故此时的时间恰好取到最大值,
由题意可知:一共旋转了,故时间,
,
综上所述:.
【点睛】
本题主要是考查了求解角度大小、角平分线的性质以及角中的动点问题,熟练地利用角与角之间的关系,求解未知角的度数,针对求解动点的时间取值范围,尝试利用条件,找到满足题意的临界情况,是求解该题的关键.
3、141°41′
【解析】
【分析】
利用角的和差关系计算,先求得∠COD=51°41′,再由∠AOD=∠AOC+∠COD即可求解.
【详解】
解:∵∠BOD=90°,∠BOC=38°19′
∴∠COD=∠BOD-∠BOC=51°41′
∵∠AOC=90°
∴∠AOD=∠AOC+∠COD=141°41′
答:∠AOD的度数为141°41′.
【点睛】
本题主要考查了余角,正确得出∠COD的度数是解题关键.
4、(1)78°;(2)80°.
【解析】
【分析】
(1)根据角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线)结合图形可得,然后将角度代入计算即可;
(2)由互补可得,结合图形可得:,,由角平分线定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线)可得,利用等量代换得出,将已知角度代入求解即可.
【详解】
解:(1)OB是的平分线,且,
OD是的平分线,且,
∴,
,
∴,
∴;
(2)∵与互补,
∴,
由图知:,
,
由角平分线定义知:,
∴,
即,
∵,
∴,
即.
【点睛】
题目主要考查角平分线及互补的定义,角度之间的计算,理解题意,找准角度进行计算是解题关键.
5、角平分线的定义,平角的定义,
【解析】
【分析】
先利用邻补角的含义求解 再利用角平分线的含义证明:∠AOC∠AOF,再利用平角的定义结合角的和差关系可得答案.
【详解】
解:∵∠AOE=40°(已知)
∴∠AOF=180°﹣(邻补角定义)
=180°﹣40°
=140°
∵OC平分∠AOF(已知)
∴∠AOC∠AOF(角平分线的定义)
∵∠AOB=90°(已知)
∴∠BOD=180°﹣∠AOB﹣∠AOC(平角的定义)
=180°﹣90°﹣70°
=20°
故答案为:角平分线的定义,平角的定义,
【点睛】
本题考查的是平角的定义,邻补角的含义,角平分线的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后测评,共23页。试卷主要包含了若的补角是150°,则的余角是等内容,欢迎下载使用。
这是一份2021学年第七章 观察、猜想与证明综合与测试精练,共22页。试卷主要包含了下列语句中,错误的个数是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试一课一练,共20页。试卷主要包含了下列命题,命题,若的余角为,则的补角为等内容,欢迎下载使用。