七年级下册第七章 观察、猜想与证明综合与测试课后练习题
展开
这是一份七年级下册第七章 观察、猜想与证明综合与测试课后练习题,共24页。试卷主要包含了如图,C,已知,则的余角的补角是,下列语句中,是命题的是,若∠α=55°,则∠α的余角是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明专项测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若的补角是125°,则的余角是( )
A.90° B.54° C.36° D.35°
2、若一个角比它的余角大30°,则这个角等于( )
A.30° B.60° C.105° D.120°
3、如图,若要使与平行,则绕点至少旋转的度数是( )
A. B. C. D.
4、如图,C、D在线段BE上,下列说法:
①直线CD上以B、C、D、E为端点的线段共有6条;
②图中至少有2对互补的角;
③若∠BAE=90°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和360°;
④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有( )
A.1个 B.2个 C.3个 D.4个
5、已知,则的余角的补角是( )
A. B. C. D.
6、下列语句中,是命题的是( )
①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.
A.①④⑤ B.①②④ C.①③④ D.②③④⑤
7、一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠A=60°,则∠DBC的度数为( )
A.45° B.25° C.15° D.20°
8、如图,直线a∥b,直线AB⊥AC,若∠1=52°,则∠2的度数是( )
A.38° B.42° C.48° D.52°
9、若∠α=55°,则∠α的余角是( )
A.35° B.45° C.135° D.145°
10、下列图形中,∠1与∠2不是对顶角的有( )
A.1个 B.2个 C.3个 D.0个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个角的度数是48°37',则这个角的余角的度数为__________.
2、填写推理理由
如图:EF∥AD,∠1=∠2,∠BAC=70°,把求∠AGD的过程填写完整.
证明:∵EF∥AD
∴∠2=________(______________)
又∵∠1=∠2
∴∠1=∠3________
∴AB∥________(____________)
∴∠BAC+________=180°(___________)
又∵∠BAC=70°
∴∠AGD=________
3、(1)已知与互余,且,则________.(2)+________=180°.(3)若与是同类项,则m+n=________.
4、若∠α=23°30′,则∠α的补角的度数为 _____.
5、已知一个角的余角是35°,那么这个角的度数是_____°.
三、解答题(5小题,每小题10分,共计50分)
1、已知:如图,中,点、分别在、上,交于点, ,.
(1)求证:;
(2)若平分,,求的度数.
2、已知:如图①,AB∥CD,点F在直线AB、CD之间,点E在直线AB上,点G在直线CD上,∠EFG=90°.
(1)如图①,若∠BEF=130°,则∠FGC= 度;
(2)小明同学发现:如图②,无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值,并给出了一种证明该发现的辅助线作法:过点E作EM∥FG,交CD于点M.请你根据小明同学提供的辅助线方法,补全下面的证明过程;
(3)拓展应用:如图③,如果把题干中的“∠EFG=90°”条件改为“∠EFG=110°”,其它条件不变,则∠FEB﹣∠FGC= 度.
解:如图②,过点E作EM∥FG,交CD于点M.
∵AB∥CD(已知)
∴∠BEM=∠EMC( )
又∵EM∥FG
∴∠FGC=∠EMC( )
∠EFG+∠FEM=180°( )
即∠FGC=( )(等量代换)
∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=( )
又∵∠EFG=90°
∴∠FEM=90°
∴∠FEB﹣∠FGC=
即:无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值.
3、已知AB∥CD,点是AB,CD之间的一点.
(1)如图1,试探索∠AEC,∠BAE,∠DCE之间的数量关系;
以下是小明同学的探索过程,请你结合图形仔细阅读,并完成填空(理由或数学式):
解:过点E作PE∥AB(过直线外一点有且只有一条直线与这条直线平行).
∵AB∥CD(已知),
∴PE∥CD( ),
∴∠BAE=∠1,∠DCE=∠2( ),
∴∠BAE+∠DCE= + (等式的性质).
即∠AEC,∠BAE,∠DCE之间的数量关系是 .
(2)如图2,点F是AB,CD之间的一点,AF平分∠BAE,CF平分∠DCE.
①若∠AEC=74°,求∠AFC的大小;
②若CG⊥AF,垂足为点G,CE平分∠DCG,∠AEC+∠AFC=126°,求∠BAE的大小.
4、综合与实践
【问题情境】利用旋转三角尺开展数学活动,探究体会角在旋转过程中的变化.
【操作发现】如图①,将一个45°角的直角三角形三角板ABO的顶点O放在直线OD上的O处,斜边OA在直线OD上,延长BO至C.
(1)如图②,将图①中的三角板ABO绕着点O逆时针旋转90°后得到△O,此时∠BO= °,OA平分∠ ;
【实践探究】
(2)如图③,将图②中的三角板绕点O逆时针继续旋转一定角度,使OD在∠内部,且∠DOC=45°,请探究:
①∠1与∠3之间的数量关系为 .
理由如下:(请利用图中的字母和数字完成证明过程)
因为∠DOC=45°,
所以∠2+∠3=45°.
又因为∠ +∠2=45°,
所以∠2+∠ =∠ +∠2.
所以 .
②∠1的补角有 个,分别为 ,
③∠2的余角为 .
5、如图,直线AB,CD,EF相交于点O,
(1)指出∠AOC,∠EOB的对顶角及∠AOC的邻补角.
(2)图中一共有几对对顶角?指出它们.
---------参考答案-----------
一、单选题
1、D
【分析】
根据题意,得=180°-125°,的余角是90°-(180°-125°)=125°-90°,选择即可.
【详解】
∵的补角是125°,
∴=180°-125°,
∴的余角是90°-(180°-125°)=125°-90°=35°,
故选D.
【点睛】
本题考查了补角,余角的计算,正确列出算式是解题的关键.
2、B
【分析】
设这个角为α,则它的余角为:90°-α,由“一个角比它的余角大30°”列方程解方程即可的解.
【详解】
解:设这个角为α,则它的余角为:90°-α,
由题意得,α-(90°-α)=30°,
解得:α=60°,
故选:B
【点睛】
本题考查了余角的定义和一元一次方程的应用,根据题意列出等量关系是解题的关键.
3、A
【分析】
根据“两直线平行,内错角相等”进行计算.
【详解】
解:如图,
∵l1∥l2,
∴∠AOB=∠OBC=42°,
∴80°-42°=38°,
即l1绕点O至少旋转38度才能与l2平行.
故选:A.
【点睛】
考查了旋转的性质和平行线的性质,根据平行线的性质得到∠AOB=∠OBC=42°是解题的关键,难度不大.
4、B
【分析】
按照两个端点确定一条线段即可判断①;根据补角的定义即可判断②;根据角的和差计算机可判断③;分两种情况讨论:当点F在线段CD上时点F到点B、C、D、E的距离之和最小,当点F和E重合时,点F到点B、C、D、E的距离之和最大计算即可判断④.
【详解】
解:①以B、C、D、E为端点的线段BC、BD、BE、CE、CD、DE共6条,故此说法正确;
②图中互补的角就是分别以C、D为顶点的两对邻补角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故此说法正确;
③由∠BAE=90°,∠CAD=40°,根据图形可以求出∠BAC+∠DAE+∠DAC+∠BAE+∠BAD+∠CAE=3∠BAE+∠CAD=310°,故此说法错误;
④如图1,当F不在CD上时,FB+FC+FD+FE=BE+CD+2FC,如图2当F在CD上时,FB+FC+FD+FE=BE+CD,如图3当F与E重合时,FB+FC+FE+FD=BE+CD+2ED,同理当F与B重合时,FB+FC+FE+FD=BE+CD+2BC,
∵BC=2,CD=DE=3,
∴当F在的线段CD上最小,则点F到点B、C、D、E的距离之和最小为FB+FE+FD+FC=2+3+3+3=11,当F和E重合最大则点F到点B、C、D、E的距离之和FB+FE+FD+FC=17,故此说法错误.
故选B.
【点睛】
本题主要考查了线段的数量问题,补角的定义,角的和差,线段的和差,解题的关键在于能够熟练掌握相关知识进行求解.
5、A
【分析】
根据余角和补角定义解答.
【详解】
解:的余角的补角是,
故选:A .
【点睛】
此题考查余角和补角的定义:和为90度的两个角互为余角,和为180度的两个角是互为补角.
6、A
【分析】
根据命题的定义分别进行判断即可.
【详解】
解:①若∠1=60°,∠2=60°,则∠1=∠2,是命题,符合题意;
②同位角相等吗?是疑问句,不是命题,不符合题意;
③画线段AB=CD,没有对事情作出判断,不是命题,不符合题意;
④如果a>b,b>c,那么a>c,是命题,符合题意;
⑤直角都相等,是命题,符合题意,
命题有①④⑤.
故选:A.
【点睛】
本题考查了命题与定理:判断事物的语句叫命题,命题有题设与结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.
7、C
【分析】
直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.
【详解】
解:由题意可得:∠EDF=45°,∠ABC=30°,
∵AB∥CF,
∴∠ABD=∠EDF=45°,
∴∠DBC=45°-30°=15°.
故选:C.
【点睛】
此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键.
8、A
【分析】
利用直角三角形的性质先求出∠B,再利用平行线的性质求出∠2.
【详解】
解:∵AB⊥AC,∠1=52°,
∴∠B=90°﹣∠1
=90°﹣52°
=38°
∵a∥b,
∴∠2=∠B=38°.
故选:A.
【点睛】
本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.
9、A
【分析】
根据余角的定义即可得.
【详解】
由余角定义得∠α的余角为90°减去55°即可.
解:由余角定义得∠α的余角等于90°﹣55°=35°.
故选:A.
【点睛】
本题考查了余角的定义,熟记定义是解题关键.
10、C
【分析】
根据对顶角的定义:有公共顶点且两条边都互为反向延长线的两个角称为对顶角,逐一判断即可.
【详解】
解:①中∠1和∠2的两边不互为反向延长线,故①符合题意;
②中∠1和∠2是对顶角,故②不符合题意;
③中∠1和∠2的两边不互为反向延长线,故③符合题意;
④中∠1和∠2没有公共点,故④符合题意.
∴∠1 和∠2 不是对顶角的有3个,
故选C.
【点睛】
此题考查的是对顶角的识别,掌握对顶角的定义是解决此题的关键.
二、填空题
1、41°23'
【分析】
根据余角的概念求解即可.余角:如果两个角相加等于90°,那么这两个角互为余角.
【详解】
解:∵一个角的度数是48°37',
∴这个角的余角的度数为90°-48°37'=41°23'.
故答案为:41°23'.
【点睛】
此题考查了余角的概念,解题的关键是熟练掌握余角的概念.余角:如果两个角相加等于90°,那么这两个角互为余角.
2、∠3 两直线平行,同位角相等 等量代换 DG 内错角相等,两直线平行 ∠AGD 两直线平行,同旁内角互补 110°
【分析】
根据平行线的判定与性质,求解即可.
【详解】
∵EF∥AD,
∴∠2=∠3,(两直线平行,同位角相等)
又∵∠1=∠2,
∴∠1=∠3,(等量代换)
∴AB∥DG.(内错角相等,两直线平行)
∴∠BAC+∠AGD=180°.(两直线平行,同旁内角互补)
又∵∠BAC=70°,
∴∠AGD=110°.
故答案是:∠3,两直线平行,同位角相等,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补,110°
【点睛】
此题考查了平行线的判定与性质,解题的关键是掌握平行线的判定方法与性质.
3、
【分析】
(1)根据余角的定义和角度的四则运算法则进行求解即可;
(2)根据角度的四则运算法则求解即可;
(3)根据同类项的定义,先求出m、n的值,然后代值计算即可.
【详解】
解:(1)与互余,且,
∴;
故答案为:;
(2);
故答案为:;
(3)∵与是同类项,
∴,
∴,
∴.
故答案为:.
【点睛】
本题主要考查了求一个角的余角,角度的四则运算,同类项的定义,代数式求值,解一元一次方程,熟知相关知识是解题的关键.
4、156°30′
【分析】
如果两个角的和是180°,则这两个角互为补角.由此定义进行求解即可.
【详解】
解:∵∠α=23°30′,
∴∠α的补角=180°﹣∠α=23°30′=156°30',
故答案为:156°30'.
【点睛】
本题考查补角的计算,熟练掌握两个角互补的定义,并能准确计算是解题的关键.
5、55
【分析】
根据余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角进行计算即可.
【详解】
解:这个角的是90°35°=55°,
故答案为:55.
【点睛】
此题主要考查了余角,解题的关键是明确两个角互余,和为90°.
三、解答题
1、(1)见解析;(2)72°
【解析】
【分析】
(1)等量代换得出∠3=∠DFE,平行线的判定得出EF//AB,可以推出∠ADE=∠B,即可判断结论;
(2)由平分线的定义得出∠ADE=∠EDC=∠B,由平角的定义列出关于∠5+∠ADE+∠EDC==180°,求出∠B的度数,即可得出∠ADC的度数,由EF//AB即可求出∠2的度数.
【详解】
解:(1)∵,∠2+∠DFE=180°,
∴∠3=∠DFE,
∴EF//AB,
∴∠ADE=∠1,
又∵,
∴∠ADE=∠B,
∴DE//BC,
(2)∵平分,
∴∠ADE=∠EDC,
∵DE//BC,
∴∠ADE=∠B,
∵
∴∠5+∠ADE+∠EDC==180°,
解得:,
∴∠ADC=2∠B=72°,
∵EF//AB,
∴∠2=∠ADC=180°-108°=72°,
【点睛】
本题考查了平行线的判定和性质、邻补角、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
2、(1)40°;(2)见解析;(3)70°
【解析】
【分析】
(1)过点F作FN∥AB,由∠FEB=150°,可计算出∠EFN的度数,由∠EFG=90°,可计算出∠NFG的度数,由平行线的性质即可得出答案;
(2)根据题目补充理由和相关结论即可;
(3)类似(2)中的方法求解即可.
【详解】
解:(1)过点F作FN∥AB,
∵FN∥AB,∠FEB=130°,
∴∠EFN+∠FEB=180°,
∴∠EFN=180°﹣∠FEB=180°﹣130°=50°,
∵∠EFG=90°,
∴∠NFG=∠EFG﹣∠EFN=90°﹣50°=40°,
∵AB∥CD,
∴FN∥CD,
∴∠FGC=∠NFG=40°.
故答案为:40°;
(2)如图②,过点E作EM∥FG,交CD于点M.
∵AB∥CD(已知)
∴∠BEM=∠EMC(两直线平行,内错角相等)
又∵EM∥FG
∴∠FGC=∠EMC(两直线平行,同位角相等)
∠EFG+∠FEM=180°(两直线平行,同旁内角互补)
即∠FGC=(∠BEM)(等量代换)
∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(∠FEM)
又∵∠EFG=90°
∴∠FEM=90°
∴∠FEB﹣∠FGC=90°
故答案为:两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,∠BEM,∠FEM,90°
(3)过点E作EH∥FG,交CD于点H.
∵AB∥CD
∴∠BEH=∠EHC
又∵EM∥FG
∴∠FGC=∠EHC
∠EFG+∠FEH=180°
即∠FGC=∠BEH
∴∠FEB﹣∠FGC=∠FEB﹣∠BEH=∠FEH
又∵∠EFG=110°
∴∠FEH=70°
∴∠FEB﹣∠FGC=70°
故答案为:70°.
【点睛】
本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质进行求解是解决本题的关键.
3、(1)平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE;(2)①37°;②52°
【解析】
【分析】
(1)结合图形利用平行线的性质填空即可;
(2)①过F作FG∥AB,由(1)得:∠AEC=∠BAE+∠DCE,根据AB∥CD,FG∥AB,CD∥FG,得出∠AFC=∠AFG+∠GFC=∠BAF+∠DCF,根据AF平分∠BAE,CF平分∠DCE,可得∠BAF=∠BAE,∠DCF=∠DCE,根据角的和差∠AFC=∠BAF+∠DCF=∠AEC即可;
②由①得:∠AEC=2∠AFC,可求∠AFC=42°,∠AEC=82°,根据CG⊥AF,求出∠GCF=90-∠AFC=48°,根据角平分线计算得出∠GCF=3∠DCF,求出∠DCF=16°即可.
【详解】
解:(1)平行于同一条直线的两条直线平行,
两直线平行,内错角相等,
∠1,∠2,
∠AEC=∠BAE+∠DCE,
故答案为:平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE,
(2)①过F作FG∥AB,
由(1)得:∠AEC=∠BAE+∠DCE,
∵AB∥CD,FG∥AB,
∴CD∥FG,
∴∠BAF=∠AFG,∠DCF=∠GFC,
∴∠AFC=∠AFG+∠GFC=∠BAF+∠DCF,
∵AF平分∠BAE,CF平分∠DCE,
∴∠BAF=∠BAE,∠DCF=∠DCE,
∴∠AFC=∠BAF+∠DCF,
=∠BAE+∠DCE,
=(∠BAE+∠DCE),
=∠AEC,
=×74°,
=37°;
②由①得:∠AEC=2∠AFC,
∵∠AEC+∠AFC=126°,
∴2∠AFC+∠AFC=126°
∴3∠AFC=126°,
∴∠AFC=42°,∠AEC=84°,
∵CG⊥AF,
∴∠CGF=90°,
∴∠GCF=90-∠AFC=48°,
∵CE平分∠DCG,
∴∠GCE=∠ECD,
∵CF平分∠DCE,
∴∠DCE=2∠DCF=2∠ECF,
∴∠GCF=3∠DCF,
∴∠DCF=16°,
∴∠DCE=32°,
∴∠BAE=∠AEC﹣∠DCE=52°.
【点睛】
本题考查平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程,掌握平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程是解题关键.
4、(1)90,BO;(2)①∠1=∠3,1,3,1,∠1=∠3;②2,∠AOA'、∠BOB';③∠
【解析】
【分析】
(1)图中三角板ABO绕着点O逆时针旋转90°后得到△O,可知∠BO即为旋转角度,即∠BO=90°;已知∠AOB=45°,可知∠AO=45°,即OA平分∠BO;
(2)①根据所给出的证明过程进行填空即可;
②由①可知,∠1=∠3,∠1+∠AOA'=180°,∠3+∠BOB=180°,可知∠1的补角有2个,分别为∠AOA'、∠BOB;
③根据图形进行转化即可得出∠2的余角.
【详解】
解:(1)此时∠BO= 90 °,OA平分∠ BO ;
(2)①∠1=∠2(相等)
理由如下:因为∠DOC=45°,
所以∠2+∠3=45°.
又因为∠ 1 +∠2=45°
所以∠2+∠ 3 =∠ 1 +∠2
所以∠1=∠3
②由图可知,∠1+∠AOA'=180°,∠3+∠BOB=180°,
∵∠1=∠3,
∴∠1的补角有2个,分别为∠AOA'、∠BOB' ,
③由图可知,∠2+∠1=45°,
∴∠2=45°-∠1,
即∠2的余角为:90°-(45°-∠1)=45°+∠1=45°+∠3=∠,
故:∠2的余角为∠.
【点睛】
本题主要考查的是角度中的基础定义,熟练掌握其中的定义是解本题的关键.
5、(1)∠AOC的对顶角是∠BOD,∠EOB的对顶角是∠AOF,.∠AOC的邻补角是∠AOD,∠BOC;(2)共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD
【解析】
【分析】
根据对顶角的定义:两个角有一个公共点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角叫做对顶角;邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种位置关系的两个角叫做邻补角,进行求解即可.
【详解】
解:(1)由题意得:∠AOC的对顶角是∠BOD,
∠EOB的对顶角是∠AOF.
∠AOC的邻补角是∠AOD,∠BOC.
(2)图中共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD.
【点睛】
本题主要考查了对顶角和邻补角的定义,熟知定义是解题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后作业题,共20页。试卷主要包含了如图,C,已知,则的余角的补角是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步达标检测题,共18页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试习题,共22页。试卷主要包含了下列说法正确的个数是,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。