北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步练习题
展开这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步练习题,共21页。试卷主要包含了直线,如图,直线AB等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
2、如图,O是直线AB上一点,OE平分∠AOB,∠COD=90°,则图中互余的角有( )对.
A.5 B.4 C.3 D.2
3、下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( )
A.1个 B.2个 C.3个 D.4个
4、直线、、、如图所示.若∠1=∠2,则下列结论错误的是( )
A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠5
5、已知一个角等于它的补角的5倍,那么这个角是( )
A.30° B.60° C.45° D.150°
6、如图,直尺的一条边经过直角三角尺的直角顶点且平分直角,它的对边恰巧经过60°角的顶点.则∠1的大小是( )
A.30° B.45° C.60° D.75°
7、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )
A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°
8、如图,直线AB、CD相交于点O,EO⊥AB于点O,∠EOC=35°,则∠AOD的度数为( )
A.55° B.125° C.65° D.135°
9、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为140°,则第二次的拐角为( )
A.40° B.50° C.140° D.150°
10、如图,直线AB、CD相交于点O,OE平分∠BOC,若∠BOD:∠BOE=1:2,则∠AOE的大小为( )
A.72° B.98°
C.100° D.108°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线AB、CD相交于点O,OE⊥AB于点O,若∠COE=55°,则∠BOD为______.
2、如图,AB是一条直线,如果∠1=65°15′,∠2=78°30′,则∠3=_________度.
3、如图,,,,则∠CAD的度数为____________.
4、已知∠1与∠2互余,∠3与∠2互余,则∠1_____∠3.(填“>”,“=”或“<”)
5、如图,过直线AB上一点O作射线OC,∠BOC=29°38′,OD平分∠AOC,则∠DOC的度数为 _____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.则∠BON=______°.
(2)将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为多少?
2、完成下面的证明
如图,点B在AG上,AGCD,CF平分∠BCD,∠ABE=∠FCB,BE⊥AF点E.
求证:∠F=90°.
证明:∵AGCD(已知)
∴∠ABC=∠BCD(____)
∵∠ABE=∠FCB(已知)
∴∠ABC﹣∠ABE=∠BCD﹣∠FCB
即∠EBC=∠FCD
∵CF平分∠BCD(已知)
∴∠BCF=∠FCD(____)
∴____=∠BCF(等量代换)
∴BECF(____)
∴____=∠F(____)
∵BE⊥AF(已知)
∴____=90°(____)
∴∠F=90°.
3、如图,在下列解答中,填写适当的理由或数学式:
(1)∵∠A=∠CEF,( 已知 )
∴________∥________; (________)
(2)∵∠B+∠BDE=180°,( 已知 )
∴________∥________;(________)
(3)∵DE∥BC,( 已知 )
∴∠AED=∠________; (________)
(4)∵AB∥EF,( 已知 )
∴∠ADE=∠________.(________)
4、如图直线,直线与分别和交于点交直线b于点C.
(1)若,直接写出 ;
(2)若,则点B到直线的距离是 ;
(3)在图中直接画出并求出点A到直线的距离.
5、一个角的余角的3倍比这个角的补角大18°,求这个角的度数.
---------参考答案-----------
一、单选题
1、B
【分析】
根据对顶角的定义作出判断即可.
【详解】
解:根据对顶角的定义可知:只有B选项的是对顶角,其它都不是.
故选:B.
【点睛】
本题考查对顶角的定义,解题关键是明确两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
2、B
【分析】
根据余角的定义找出互余的角即可得解.
【详解】
解:∵OE平分∠AOB,
∴∠AOE=∠BOE=90°,
∴互余的角有∠AOC和∠COE,∠AOC和∠BOD,∠COE和∠DOE,∠DOE和∠BOD共4对,
故选:B.
【点睛】
本题考查了余角的定义,从图中确定余角时要注意按照一定的顺序,防止遗漏.
3、C
【分析】
根据平行线的性质与判定可以判断①②④,根据垂线段最短可以判断③.
【详解】
解:①平面内,垂直于同一条直线的两直线平行,是真命题;
②经过直线外一点,有且只有一条直线与这条直线平行,是真命题;
③垂线段最短,是真命题;
④两直线平行,同旁内角互补,是假命题,
∴真命题有3个,
故选C.
【点睛】
本题主要考查了判断命题真假,熟知相关知识是解题的关键.
4、D
【分析】
根据平行线的判定与性质、对顶角相等逐项判断即可.
【详解】
解:∵∠1=∠2,
∴AB∥CD,故A正确,不符合题意;
∴∠4=∠5,故C正确,不符合题意;
∵∠EFB与∠3是对顶角,
∴∠EFB=∠3,故B正确,
无法判断∠3=∠5,故D错误,符合题意,
故选:D.
【点睛】
本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.
5、D
【分析】
列方程求出这个角即可.
【详解】
解:设这个角为x,
列方程得:x=5(180°−x)
解得x=150°.
故选:D.
【点睛】
本题考查了补角,若两个角的和等于180°,则这两个角互补,列方程求出这个角是解题的关键.
6、D
【分析】
由AC平分∠BAD,∠BAD=90°,得到∠BAC=45°,再由BD∥AC,得到∠ABD=∠BAC=45°,∠1+∠CBD=180°,由此求解即可.
【详解】
解:∵AC平分∠BAD,∠BAD=90°,
∴∠BAC=45°
∵BD∥AC,
∴∠ABD=∠BAC=45°,∠1+∠CBD=180°,
∵∠CBD=∠ABD+∠ABC=45°+60°=105°,
∴∠1=75°,
故选D.
【点睛】
本题主要考查了平行线的性质和角平分线的定义,解题的关键在于能够熟练掌握平行线的性质.
7、D
【分析】
同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.
【详解】
解:(同位角相等,两直线平行),故A不符合题意;
∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;
(同位角相等,两直线平行)故C不符合题意;
∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,
所以不能判定 故D符合题意;
故选D
【点睛】
本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.
8、B
【分析】
先根据余角的定义求得,进而根据邻补角的定义求得即可.
【详解】
EO⊥AB,∠EOC=35°,
,
.
故选:B.
【点睛】
本题考查了垂直的定义,求一个角的余角、补角,掌握求一个角的余角与补角是解题的关键.
9、C
【分析】
由于拐弯前、后的两条路平行,用平行线的性质求解即可.
【详解】
解:∵拐弯前、后的两条路平行,
∴(两直线平行,内错角相等).
故选:C.
【点睛】
本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.
10、D
【分析】
根据角平分线的定义得到∠COE=∠BOE,根据邻补角的定义列出方程,解方程求出∠BOD,根据对顶角相等求出∠AOC,结合图形计算,得到答案.
【详解】
解:设∠BOD=x,
∵∠BOD:∠BOE=1:2,
∴∠BOE=2x,
∵OE平分∠BOC,
∴∠COE=∠BOE=2x,
∴x+2x+2x=180°,
解得,x=36°,即∠BOD=36°,∠COE=72°,
∴∠AOC=∠BOD=36°,
∴∠AOE=∠COE+∠AOC=108°,
故选:D.
【点睛】
本题考查的是对顶角、邻补角的概念,掌握对顶角相等、邻补角之和为180°是解题的关键.
二、填空题
1、35°
【分析】
根据垂直的定理得出的度数,然后根据已知条件得出的度数,最后根据对顶角相等求出即可.
【详解】
解:∵OE⊥AB,
∴∠AOE=90°,
∵ ,
∴∠AOC=90°- ,
∴∠BOD=∠AOC= ,
故答案为:35°.
【点睛】
本题考查了垂线的定义,对顶角的定义,根据题意得出的度数是解本题的关键.
2、36.25
【分析】
根据度、分、秒之间的加减运算直接计算65°15′+78°30′即可得到∠1+∠2;观察图形可知∠1+∠2+∠3的和为平角,由此分析求解∠3的度数.
【详解】
解:∵∠1=65°15′,∠2=78°30′,
∴∠3=180°﹣(∠1+∠2)
=180°﹣(65°15′+78°30′)
=36°15′
=36.25°.
故答案为:36.25.
【点睛】
本题主要考查角加减的计算,角的单位与角度制,结合图形找出各角的数量关系是解决此题的关键.
3、
【分析】
根据两直线平行内错角相等可得,,再根据角之间的关系即可求出的度数.
【详解】
解:∵∥,,
∴,
∴
故答案为:
【点睛】
本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是解答此题的关键.
4、=
【分析】
根据等(同)角的余角相等解答即可.
【详解】
解:∵∠1与∠2互余,∠3与∠2互余,
∴∠1=∠3,
故答案为:=.
【点睛】
本题考查余角,熟知同(等)角的余角相等是解答的关键.
5、
【分析】
先根据邻补角互补求出∠AOC=150°22′,再由角平分线的定义求解即可.
【详解】
解:∵∠BOC=29°38′,∠AOC+∠BOC=180°,
∴∠AOC=150°22′,
∵OD平分∠AOC,
∴,
故答案为:.
【点睛】
本题主要考查了邻补角互补,角度制的计算,角平分线的定义,熟知相关知识是解题的关键.
三、解答题
1、(1)35;(2)5.5或23.5
【解析】
【分析】
(1)先计算∠MOB的度数,再利用互余原理计算即可;
(2)分ON的反向延长线平分∠AOC和ON所在射线平分∠AOC两种情形计算,先计算需要旋转的度数,除以旋转的速度即可得到旋转需要的时间.
【详解】
解:(1)如图2,
∵OM平分∠BOC,
∴∠MOC=∠MOB,
又∵∠BOC=110°
∴∠MOB=55°,
∵∠MON=90°,
∴∠BON=∠MON-∠MOB=35°,
故答案为:35°;
(2)∵∠BOC=110°
∴∠AOC=70°,
当射线NO的延长线恰好平分锐角∠AOC时,
∵∠AOD=∠COD=35°,
∴∠BON=35°,∠BOM=55°,
即逆时针旋转的角度为55°,
由题意得,10t=55,
故t=5.5.
当ON平分∠AOC时,
逆时针旋转的角度为:360°-90°-35°=235°,
由题意得,10t=235,
∴t=23.5;
故t=5.5秒或t=23.5秒.
【点睛】
本题考查了旋转的意义,角的平分线,互余的性质,分类的思想,熟练掌握性质,正确进行分类是解题的关键.
2、两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义
【解析】
【分析】
根据平行线的性质得到∠ABC=∠BCD,再根据角平分线的定义进而得到∠EBC=∠BCF,即可判定BE∥CF,根据平行线的性质得出∠BEF=∠F,再根据垂直的定义即可得解.
【详解】
证明:∵AG∥CD(已知),
∴∠ABC=∠BCD(两直线平行,内错角相等),
∵∠ABE=∠FCB(已知),
∴∠ABC﹣∠ABE=∠BCD﹣∠FCB,
即∠EBC=∠FCD,
∵CF平分∠BCD(已知),
∴∠BCF=∠FCD(角平分线的定义),
∴∠EBC=∠BCF(等量代换),
∴BE∥CF(内错角相等,两直线平行),
∴∠BEF=∠F(两直线平行,内错角相等),
∵BE⊥AF(已知),
∴∠BEF=90°(垂直的定义),
∴∠F=90°.
故答案为:两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义.
【点睛】
本题主要考查了平行线的性质与判定,角平分线的定义,垂直的定义,熟练掌握相关知识是解题的关键.
3、(1)AB;EF;同位角相等,两直线平行;(2)DE;BC;同旁内角互补,两直线平行;(3)C;两直线平行,同位角相等;(4)DEF;两直线平行,内错角相等
【解析】
【分析】
(1)根据平行线的判定定理:同位角相等,两直线平行,即可得;
(2)根据平行线的判定定理:同旁内角互补,两直线平行,即可得;
(3)根据平行线的性质:两直线平行,同位角相等,即可得;
(4)根据平行线的性质:两直线平行,内错角相等,即可得.
【详解】
解:(1)∵,(已知)
∴,(同位角相等,两直线平行);
(2)∵,(已知)
∴,(同旁内角互补,两直线平行);
(3)∵,(已知)
∴,(两直线平行,同位角相等)
(4)∵,(已知)
∴(两直线平行,内错角相等).
故答案为:(1)AB;EF;同位角相等,两直线平行;(2)DE;BC;同旁内角互补,两直线平行;(3)C;两直线平行,同位角相等;(4)DEF;两直线平行,内错角相等.
【点睛】
题目主要考查平行线的判定定理和性质,熟练掌握理解平行线的性质定理并结合图形是解题关键.
4、(1);(2)4;(3)作图见详解;点A到直线BC的距离为.
【解析】
【分析】
(1)根据平行线的性质:两直线平行,同旁内角互补及垂直的性质即可得;
(2)根据点到直线的距离可得点B到直线AC的距离为线段,由此即可得出结果;
(3)过点A作,点A到直线BC的距离为线段AD的长度,利用三角形等面积法即可得出.
【详解】
解:(1)∵,
∴,
∵,,
∴,
故答案为:;
(2)∵,
∴点B到直线AC的距离为线段,
故答案为:4;
(3)如图所示:过点A作,点A到直线BC的距离为线段AD的长度,
∵,
∴为直角三角形,
∴,
即,
解得:,
∴点A到直线BC的距离为.
【点睛】
题目主要考查平行线的性质及点到直线的距离,熟练掌握等面积法求距离是解题关键.
5、36°
【解析】
【分析】
根据题意,先设这个角的度数为x°,则这个角的余角的度数为90°-x°,这个角的补角的度数为180°-x°,再列方程进行计算.
【详解】
解:设这个角的度数是x°.
由题意,得 .
解得,
∴这个角的度数为36°.
【点睛】
本题主要考查了一元一次方程的实际应用,与余角补角有关的计算,掌握一元一次方程的解法是解题的关键.
相关试卷
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练,共22页。试卷主要包含了如图,不能推出a∥b的条件是,下列说法中,真命题的个数为等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练,共23页。试卷主要包含了下列语句中,是命题的是,若的补角是150°,则的余角是,若的补角是125°,则的余角是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习,共21页。试卷主要包含了下列语句中,错误的个数是,下列说法中,真命题的个数为,如图,直线AB,下列命题中是真命题的是等内容,欢迎下载使用。