![精品解析京改版七年级数学下册第七章观察、猜想与证明专项测试练习题(名师精选)第1页](http://www.enxinlong.com/img-preview/2/3/12696531/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析京改版七年级数学下册第七章观察、猜想与证明专项测试练习题(名师精选)第2页](http://www.enxinlong.com/img-preview/2/3/12696531/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析京改版七年级数学下册第七章观察、猜想与证明专项测试练习题(名师精选)第3页](http://www.enxinlong.com/img-preview/2/3/12696531/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中北京课改版第七章 观察、猜想与证明综合与测试练习题
展开这是一份初中北京课改版第七章 观察、猜想与证明综合与测试练习题,共24页。试卷主要包含了下列命题中,为真命题的是,若的补角是125°,则的余角是,如图,C,下列说法中正确的个数是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明专项测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列命题中,真命题是( )
A.两条直线被第三条直线所截,内错角相等 B.相等的角是对顶角
C.在同一平面内,垂直于同一条直线的两条直线平行 D.同旁内角互补
2、如图,下列条件中能判断直线的是( )
A.∠1=∠2 B.∠1=∠5 C.∠2=∠4 D.∠3=∠5
3、下列命题是真命题的是( )
A.等角的余角相等 B.同位角相等
C.互补的角一定是邻补角 D.两个锐角的和是钝角
4、下列命题中,为真命题的是( )
A.若,则 B.若,则
C.同位角相等 D.对顶角相等
5、若的补角是125°,则的余角是( )
A.90° B.54° C.36° D.35°
6、如图,C、D在线段BE上,下列说法:
①直线CD上以B、C、D、E为端点的线段共有6条;
②图中至少有2对互补的角;
③若∠BAE=90°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和360°;
④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有( )
A.1个 B.2个 C.3个 D.4个
7、一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠A=60°,则∠DBC的度数为( )
A.45° B.25° C.15° D.20°
8、下列说法中正确的个数是( )
(1)在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c
(2)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a⊥c
(3)在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c
(4)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.
A.1 B.2 C.3 D.4
9、下列图形中,∠1与∠2不是对顶角的有( )
A.1个 B.2个 C.3个 D.0个
10、以下命题是假命题的是( )
A.的算术平方根是2
B.有两边相等的三角形是等腰三角形
C.三角形三个内角的和等于180°
D.过直线外一点有且只有一条直线与已知直线平行
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、两个角和的两边互相平行,且角比角的2倍少30°,则这个角是____________度.
2、已知∠α=65°14'15″,那么∠α的余角等于 _____.
3、图中∠AOB的余角大小是 _____°(精确到1°).
4、如图,O是直线AB上一点,已知∠1=36°,OD平分∠BOC,则∠AOD=_____.
5、如图,∠1还可以用______ 表示,若∠1=62°,那么∠BCA=____ 度.
三、解答题(5小题,每小题10分,共计50分)
1、如图1所示,MN//PQ,∠ABC与MN,PQ分别交于A、C两点
(1)若∠MAB=∠QCB=20°,则B的度数为 度.
(2)在图1分别作∠NAB与∠PCB的平分线,且两条角平分线交于点F.
①依题意在图1中补全图形;
②若∠ABC=n°,求∠AFC的度数(用含有n的代数式表示);
(3)如图2所示,直线AE,CD相交于D点,且满足∠BAM=m∠MAE, ∠BCP=m∠DCP,试探究∠CDA与∠ABC的数量关系
2、填写推理理由: 如图,CD∥EF,∠1=∠2,求证:∠3=∠ACB.
证明:∵CD∥EF,
∴∠DCB=∠2
∵∠1=∠2,∴∠DCB=∠1.
∴GD∥CB .
∴∠3=∠ACB .
3、如图,直线DE上有一点O,过点O在直线DE上方作射线OC,∠COE比它的补角大100°,将一直角三角板AOB的直角点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕点O按每秒10°的速度逆时针旋转一周.设旋转时间为t秒.
(1)求∠COE的度数;
(2)若射线OC的位置保持不变,在旋转过程中,是否存在某个时刻,使得∠BOC=∠BOE?若存在,请求出t的取值,若不存在,请说明理由;
(3)若在三角板开始转动的同时,射线OC也绕O点以每秒10°的速度顺时针旋转一周.从旋转开始多长时间.射线OC平分∠BOE.直接写出t的值.(本题中的角均为大0°且小180°的角)
4、如图,点O为直线AB上的一点,已知∠1=65°15′,∠2=78°30′,求∠1+∠2﹣∠3的大小.
5、如图,∠AOD = 130°,∠BOC:∠COD = 1:2,∠AOB是∠COD补角的.
(1)∠COD = _______ ;
(2)平面内射线OM满足∠AOM = 2∠DOM,求∠AOM的大小;
(3)将∠COD固定,并将射线OA,OB同时以2°/s的速度顺时针旋转,到OA与OD重合时停止.在旋转过程中,若射线OP为∠AOB的平分线,OQ为∠COD的平分线,当∠POQ+∠AOD=50°时,求旋转时间t(秒)的取值范围.
---------参考答案-----------
一、单选题
1、C
【分析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
解:A、错误,当被截的直线平行时形成的同位角才相等;
B、错误,对顶角相等但相等的角不一定是对顶角;
C、正确,必须强调在同一平面内;
D、错误,两直线平行同旁内角才互补.
故选:C.
【点睛】
主要考查命题的真假判断与平行线的性质、对顶角的特点,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
2、C
【分析】
利用平行线的判定方法判断即可得到结果.
【详解】
解:A、根据∠1=∠2不能判断直线l1∥l2,故本选项不符合题意.
B、根据∠1=∠5不能判断直线l1∥l2,故本选项不符合题意.
C、根据“内错角相等,两直线平行”知,由∠2=∠4能判断直线l1∥l2,故本选项符合题意.
D、根据∠3=∠5不能判断直线l1∥l2,故本选项不符合题意.
故选:C.
【点睛】
此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.
3、A
【分析】
由同角或等角的余角相等可判断A,由平行线的性质可判断B,由邻补角的定义可判断C,通过举反例,比如 可判断D,从而可得答案.
【详解】
解:等角的余角相等,正确,是真命题,故A符合题意,
两直线平行,同位角相等,所以同位角相等是假命题,故B不符合题意;
互补的角不一定是邻补角,所以互补的角一定是邻补角是假命题,故C不符合题意;
两个锐角的和不一定是钝角,所以两个锐角的和是钝角是假命题,故D不符合题意;
故选:A
【点睛】
本题考查的是等角的余角相等,平行线的性质,邻补角的定义,锐角与钝角的含义,掌握判断命题真假的方法是解题的关键.
4、D
【分析】
利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.
【详解】
解:A、若,则或,故A错误.
B、当时,有,故B错误.
C、两直线平行,同位角相等,故C错误.
D、对顶角相等,D正确.
故选:D .
【点睛】
本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.
5、D
【分析】
根据题意,得=180°-125°,的余角是90°-(180°-125°)=125°-90°,选择即可.
【详解】
∵的补角是125°,
∴=180°-125°,
∴的余角是90°-(180°-125°)=125°-90°=35°,
故选D.
【点睛】
本题考查了补角,余角的计算,正确列出算式是解题的关键.
6、B
【分析】
按照两个端点确定一条线段即可判断①;根据补角的定义即可判断②;根据角的和差计算机可判断③;分两种情况讨论:当点F在线段CD上时点F到点B、C、D、E的距离之和最小,当点F和E重合时,点F到点B、C、D、E的距离之和最大计算即可判断④.
【详解】
解:①以B、C、D、E为端点的线段BC、BD、BE、CE、CD、DE共6条,故此说法正确;
②图中互补的角就是分别以C、D为顶点的两对邻补角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故此说法正确;
③由∠BAE=90°,∠CAD=40°,根据图形可以求出∠BAC+∠DAE+∠DAC+∠BAE+∠BAD+∠CAE=3∠BAE+∠CAD=310°,故此说法错误;
④如图1,当F不在CD上时,FB+FC+FD+FE=BE+CD+2FC,如图2当F在CD上时,FB+FC+FD+FE=BE+CD,如图3当F与E重合时,FB+FC+FE+FD=BE+CD+2ED,同理当F与B重合时,FB+FC+FE+FD=BE+CD+2BC,
∵BC=2,CD=DE=3,
∴当F在的线段CD上最小,则点F到点B、C、D、E的距离之和最小为FB+FE+FD+FC=2+3+3+3=11,当F和E重合最大则点F到点B、C、D、E的距离之和FB+FE+FD+FC=17,故此说法错误.
故选B.
【点睛】
本题主要考查了线段的数量问题,补角的定义,角的和差,线段的和差,解题的关键在于能够熟练掌握相关知识进行求解.
7、C
【分析】
直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.
【详解】
解:由题意可得:∠EDF=45°,∠ABC=30°,
∵AB∥CF,
∴∠ABD=∠EDF=45°,
∴∠DBC=45°-30°=15°.
故选:C.
【点睛】
此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键.
8、C
【分析】
根据平行线的性质分析判断即可;
【详解】
在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c,故(1)正确;
在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c,故(2)错误;
在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c,故(3)正确;
在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.故(4)正确;
综上所述,正确的是(1)(3)(4);
故选C.
【点睛】
本题主要考查了平行线的性质,准确分析判断是解题的关键.
9、C
【分析】
根据对顶角的定义:有公共顶点且两条边都互为反向延长线的两个角称为对顶角,逐一判断即可.
【详解】
解:①中∠1和∠2的两边不互为反向延长线,故①符合题意;
②中∠1和∠2是对顶角,故②不符合题意;
③中∠1和∠2的两边不互为反向延长线,故③符合题意;
④中∠1和∠2没有公共点,故④符合题意.
∴∠1 和∠2 不是对顶角的有3个,
故选C.
【点睛】
此题考查的是对顶角的识别,掌握对顶角的定义是解决此题的关键.
10、A
【分析】
分别利用算术平方根、等腰三角形的判定、三角形内角和公式、平行的相关内容,进行分析判断即可.
【详解】
解:A、的算术平方根应该是, A是假命题,
B、有两边相等的三角形是等腰三角形,B是真命题,
C、三角形三个内角的和等于180°,C是真命题,
D、过直线外一点有且只有一条直线与已知直线平行,D是真命题,
故选:A.
【点睛】
本题主要是考查了真假命题,正确的命题为真命题,错误的命题为假命题,根据所学知识,对各个命题的正确与否进行分析,这是解决该题的关键.
二、填空题
1、或
【分析】
设为∠1和为∠2,根据图形可证得两角相等或互补,再利用方程建立等量关系求解即可.
【详解】
解:设的度数为,则的度数为,
如图1,和互相平行,可得:∠2=∠3,
同理:∠1=∠3,
∴∠2=∠1,
∴当两角相等时:,
解得:,
如图2,和互相平行,可得:∠2+∠3=,
而和互相平行,得∠1=∠3,
∴∠2+∠1=,
∴当两角互补时:,
解得:,
,
故填:或.
【点睛】
本题考查平行线的性质和方程的应用,分类讨论思想是关键.
2、
【分析】
根据互为余角的两角之和为90°,即可得出答案.
【详解】
解:=65°14'15″,
的余角=90°﹣65°14'15″=24°45'45″.
故答案为:24°45'45″.
【点睛】
本题主要是考查了余角的定义以及角度的运算,熟记互余的两个角之和为90°,是解决本题的关键.
3、63
【分析】
根据余角的定义:如果两个角的度数和为90度,那么这两个角互为余角,进行求解即可.
【详解】
解:由量角器上的度数可知,∠AOB=27°,
∴∠AOB的余角的度数=90°-∠AOB=63°,
故答案为:63.
【点睛】
本题主要考查了量角器测量角的度数和求一个角的余角,熟知余角的定义是解题的关键.
4、108°
【分析】
首先根据邻补角的定义得到∠BOC,然后由角平分线的定义求得∠COD即可.
【详解】
解:∵∠1=36°,
∴∠COB=180°-36°=144°,
∵OD平分∠BOC,
∴∠COD=∠BOC=×144°=72°,
∴∠AOD=∠1+∠COD=36°+72°=108°.
故答案为:108°.
【点睛】
本题主要考查角平分线及邻补角,角的和差,熟练掌握邻补角及角平分线的定义是解题的关键.
5、
【分析】
根据角的表示和邻补角的性质计算即可;
【详解】
∠1还可以用表示;
∵∠1=62°,,
∴;
故答案是:;.
【点睛】
本题主要考查了角的表示和邻补角的性质,准确计算是解题的关键.
三、解答题
1、(1)40;(2)①见解析;②;(3)m∠CDA+∠ABC=180°
【解析】
【分析】
(1)作MN、PQ的平行线HG,根据两直线平行,内错角相等即可解答;
(2)①根据题意作图即可,②过F作 ,根据两直线平行,同旁内角互补和内错角相等即可解答;
(3)延长AE交PQ于点G,设∠MAE=x°,∠DCP=y°,知∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,∠BCQ=180°−my°,根据(1)中所得结论知∠ABC=mx°+180°−my°,即y°−x°= ,由MNPQ知∠MAE=∠DGP=x°,根据∠CDA=∠DCP−∠DGC可得答案.
【详解】
解:(1)作 ,
∵MN//PQ,
∴,
∴ ,
∴ ;
(2)①如图所示,
②过点F作 ,
∴ ,
∴ ,
∵ ,
∴ ,
∵
∴ ,
∴ ,
∵ ,
∴ ;
(3)延长AE交PQ于点G,
设∠MAE=x°,∠DCP=y°,则∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,
∴∠BCQ=180°−my°,
由(1)知,∠ABC=mx°+180°−my°,
∴y°−x°=,
∵MNPQ,
∴∠MAE=∠DGP=x°,
则∠CDA=∠DCP−∠DGC
=y°−x°
=,
即m∠CDA+∠ABC=180°.
【点睛】
本题主要考查平行线的性质,解题的关键是掌握平行线的性质和判定等知识点.
2、两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同位角相等.
【解析】
【分析】
根据两直线平行,同位角相等可以求出∠DCB=∠2,等量代换得出∠DCB=∠1,再根据内错角相等,两直线平行得出GD∥CB,最后根据两直线平行,同位角相等,所以∠3=∠ACB.
【详解】
证明:∵CD∥EF,
∴∠DCB=∠2(两直线平行,同位角相等),
∵∠1=∠2,
∴∠DCB=∠1(等量代换).
∴GD∥CB(内错角相等,两直线平行).
∴∠3=∠ACB(两直线平行,同位角相等).
故答案为:两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同位角相等.
【点睛】
本题考查了平行线的判定与性质,熟练掌握平行线的判定方法和性质,并准确识图是解题的关键.
3、(1)140゜(2)存在,t=2秒或20秒;(3)秒
【解析】
【分析】
(1)设∠COE=x度,则其补角为(180−x)度,根据∠COE比它的补角大100°列方程即可求得结果;
(2)存在两种情况:当OC在直线DE上方时;当OC在直线DE下方时;就这两种情况考虑即可;
(3)画出图形,结合图形表示出∠COE与∠COB,根据角平分线的性质建立方程即可求得t值.
【详解】
(1)设∠COE=x度,则其补角为(180−x)度,由题意得:x−(180−x)=100
解得:x=140
即∠COE=140゜
(2)存在
当OC在直线DE上方时,此时OB平分∠BOC
∵∠COE=140゜
∴
当OB没有旋转时,∠BOC=50゜
所以OB旋转了70゜−50゜=20゜
则旋转的时间为:t=20÷10=2(秒)
当OC在直线DE下方时,如图
由图知:∠BOE+∠BOC+∠COE=360゜即:2∠BOE+∠COE=360゜
∵OB旋转了10t度
∴∠BOE=(10t−90)度
∴2(10t−90)+140=360
解得:t=20
综上所述,当t=2秒或20秒时,∠BOC=∠BOE
(3)OB、OC同时旋转10t度
如图所示,∠COE=(180゜+40゜)−(10t)゜=(220−10t)゜
∵2×(10t)゜−∠COB+50゜=360゜
∴∠COB=2× (10t)゜−310゜
∵∠COB=∠COE
∴2× 10t−310=220-10t
解得:
即当t的值为秒时,满足条件.
【点睛】
本题考查了角平分线的性质,角的和差运算,补角的概念,解一元一次方程等知识,注意数形结合及分类讨论.
4、107°30′
【解析】
【分析】
先求出∠1+∠2的和,再根据平角求出∠3,最后计算∠1+∠2﹣∠3即可.
【详解】
解:∵∠1=65°15′,∠2=78°30′,∠1+∠2+∠3=180°,
∠1+∠2=65°15′+78°30′=143°45′,
∴∠3=180°-∠1-∠2=180°-(∠1+∠2)=180°-143°45′=36°15′,
∴∠1+∠2﹣∠3=143°45′-36°15′=107°30′.
【点睛】
本题考查角的单位互化,角的和差计算,平角,掌握角的单位互化方法,角的和差计算法则,平角应用是解题关键.
5、(1);(2)∠AOM的大小为或(3)旋转时间t(秒)的取值范围为
【解析】
【分析】
(1),用分别表示出与的大小,利用角之间的关系,即可求解.
(2)分射线OM在∠AOD 的内部和外部两类情况进行讨论,利用角与角之间的关系,即可求出答案.
(3)先观察到,寻找临界情况,利用角的关系求出对应两种临界情况下的旋转角度,进而求出时间t(秒)的取值范围.
【详解】
(1)解:设:,
∠BOC:∠COD = 1:2,∠AOB是∠COD补角的.
,。
,
,
解得:,
故.
(2)解:当射线OM在∠AOD 的内部时,如下图所示:
∠AOD = 130°,且∠AOM = 2∠DOM,
当射线OM在∠AOD 的外部时,如下图所示:
∠AOD = 130°,且∠AOM = 2∠DOM,
故∠AOM的大小为或.
(3)解:有(1)可得:,
射线OP为∠AOB的平分线,OQ为∠COD的平分线,
,,
可以观察到:,
若要求解时间的取值范围,需要找到临界情况,
当与重合时,此时恰好有,, 如下图所示:
可以观察到,若与未重合之前,必有一定不满足∠POQ+∠AOD=50°,故此时的时间恰好取到最小值,
由题意可知:一共旋转了,故时间,
,
当与重合时,此时有,,
如下图所示:
若此时继续往下旋转,必有,一定不满足∠POQ+∠AOD=50°,故此时的时间恰好取到最大值,
由题意可知:一共旋转了,故时间,
,
综上所述:.
【点睛】
本题主要是考查了求解角度大小、角平分线的性质以及角中的动点问题,熟练地利用角与角之间的关系,求解未知角的度数,针对求解动点的时间取值范围,尝试利用条件,找到满足题意的临界情况,是求解该题的关键.
相关试卷
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试精练,共20页。试卷主要包含了下列命题中是真命题的是,下列说法,下列命题是真命题的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步测试题,共20页。试卷主要包含了如图,直线AB∥CD,直线AB,一个角的补角比这个角的余角大.,如图,能判定AB∥CD的条件是等内容,欢迎下载使用。
这是一份2021学年第七章 观察、猜想与证明综合与测试课时训练,共21页。试卷主要包含了下列语句中叙述正确的有,如图,C,如图,下列命题是真命题的是等内容,欢迎下载使用。