搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷:京改版七年级数学下册第七章观察、猜想与证明章节练习练习题(精选)

    精品试卷:京改版七年级数学下册第七章观察、猜想与证明章节练习练习题(精选)第1页
    精品试卷:京改版七年级数学下册第七章观察、猜想与证明章节练习练习题(精选)第2页
    精品试卷:京改版七年级数学下册第七章观察、猜想与证明章节练习练习题(精选)第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学七年级下册第七章 观察、猜想与证明综合与测试同步达标检测题

    展开

    这是一份数学七年级下册第七章 观察、猜想与证明综合与测试同步达标检测题,共22页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。
    京改版七年级数学下册第七章观察、猜想与证明章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,货轮O航行过程中,同时发现灯塔A和轮船B,灯塔A在货轮O北偏东40°的方向,∠AOE=∠BOW,则轮船B在货轮(  )A.西北方向 B.北偏西60° C.北偏西50° D.北偏西40°2、如图,下列条件中,不能判断的是(    A.∠1=∠3 B.∠2=∠4 C.∠4+∠5=180° D.∠3=∠43、如图,O是直线AB上一点,OE平分∠AOB,∠COD=90°,则图中互余的角有( )对.
    A.5 B.4 C.3 D.24、如图,已知直线相交于O平分,则的度数是(    A. B. C. D.5、用反证法证明命题“在同一平面内,若 ,则 ac”时,首先应假设( A.ab B.bc C.ac 相交 D.ab6、如图,有ABC三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的(  )方向.
    A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°7、下列说法中正确的是(  )A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点8、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为150°,则第二次的拐角为(  )A.40° B.50° C.140° D.150°9、若∠α=73°30',则∠α的补角的度数是(  )A.16°30' B.17°30' C.106°30' D.107°30'10、如图,平行线ABCD被直线AE所截.若∠1=70°,则∠2的度数为(    A.80° B.90° C.100° D.110°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知直线ABCD相交于点O,且ABCD分别位于点O两侧,OEAB,则____________.2、已知∠α=65°14'15″,那么∠α的余角等于 _____.3、已知∠1=71°,则∠1的补角等于__________度.4、75°的余角是______.5、已知∠1与∠2互余,若∠1=33°27′,则∠2的补角的度数是___________.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,中,点分别在上,于点(1)求证:(2)若平分,求的度数.2、如图1,CE平分∠ACDAE平分∠BAC,∠EAC+∠ACE=90°,(1)请判断ABCD的位置关系并说明理由;(2)如图2,当∠E=90°且ABCD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?并说明理由;(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且ABCD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.3、如图,点O为直线AB上的一点,已知∠1=65°15′,∠2=78°30′,求∠1+∠2﹣∠3的大小.4、(1)已知:如图1所示,已知∠AOC=90°,∠AOB=38°,OD平分∠BOC,请判断∠AOD和∠BOD之间的数量关系,并说明理由;(2)已知:如图2,点O在直线AD上,射线OC平分∠BOD.请判断∠AOC与∠BOC之间的数量关系,并说明理由;(3)已知:如图3,∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.直接写出锐角∠MPN的度数是    5、如图,如果∠1=60°,∠2=120°,∠D=60°,那么ABCD平行吗?BCDE呢?观察下面的解答过程,补充必要的依据或结论.解∵∠1=60°(已知)ABC=∠1 (①   ∴∠ABC=60°(等量代换)又∵∠2=120°(已知)∴(②     )+∠2=180°(等式的性质)ABCD (③     又∵∠2+∠BCD=(④   °)∴∠BCD=60°(等式的性质)∵∠D=60°(已知)∴∠BCD=∠D (⑤     BCDE (⑥      ---------参考答案-----------一、单选题1、D【分析】根据题意得:∠AON=40°,再由等角的余角相等,可得∠BON=∠AON=40°,即可求解.【详解】解:根据题意得:∠AON=40°,∵∠AOE=∠BOW,∠AON+∠AOE=90°,∠BON+∠BOW=90°,∴∠BON=∠AON=40°,∴轮船B在货轮的北偏西40°方向.故选:D【点睛】本题主要考查了余角的性质,方位角,熟练掌握等角的余角相等是解题的关键.2、D【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】解:,内错角相等,,故本选项错误,不符合题意;,同位角相等,,故本选项错误,不符合题意;,同旁内角互补,,故本选项错误,不符合题意;,它们不是内错角或同位角,的关系无法判定,故本选项正确,符合题意.故选:D.【点睛】本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.3、B【分析】根据余角的定义找出互余的角即可得解.【详解】解:∵OE平分∠AOB∴∠AOE=∠BOE=90°,∴互余的角有∠AOC和∠COE,∠AOC和∠BOD,∠COE和∠DOE,∠DOE和∠BOD共4对,故选:B.【点睛】本题考查了余角的定义,从图中确定余角时要注意按照一定的顺序,防止遗漏.4、C【分析】先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.【详解】解:∵OA平分∠EOC,∠EOC=100°,∴∠AOCEOC=50°,∴∠BOC=180°﹣∠AOC=130°.故选:C.【点睛】本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.5、C【分析】用反证法解题时,要假设结论不成立,即假设ac不平行(或ac相交).【详解】解:原命题“在同一平面内,若abcb,则a∥c”, 用反证法时应假设结论不成立,即假设ac不平行(或ac相交).故答案为:C【点睛】此题考查了反证法证明的步骤:(1)假设原命题结论不成立;(2)根据假设进行推理,得出矛盾,说明假设不成立;(3)原命题正确.6、D【分析】根据方向角的概念,和平行线的性质求解.【详解】解:如图:
     AFDE∴∠ABE=∠FAB=43°,ABBC∴∠ABC=90°,∴∠CBD=180°﹣90°﹣43°=47°,C地在B地的北偏西47°的方向上.故选:D.【点睛】本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.7、B【分析】根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.【详解】解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;B.两点之间的所有连线中,线段最短,正确;C.相等的角不一定是对顶角,故不符合题意;D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;故选:B.【点睛】本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.8、D【分析】由于拐弯前、后的两条路平行,可考虑用平行线的性质解答.【详解】解:∵拐弯前、后的两条路平行,∴∠B=∠C=150°(两直线平行,内错角相等).
    故选:D.【点睛】本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.9、C【分析】根据补角的定义可知,用180°﹣73°30'即可,【详解】解:∠α的补角的度数是180°﹣73°30'=106°30′.故选:C.【点睛】本题考查角的度量及补角的定义,解题关键是掌握补角的定义.10、D【分析】直接利用对顶角以及平行线的性质分析得出答案.【详解】解:∵∠1=70°,∴∠1=∠3=70°,ABDC∴∠2+∠3=180°,∴∠2=180°−70°=110°.故答案为:D.【点睛】此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.二、填空题1、130°或50°【分析】根据题意作出图形,根据垂直的定义,互余与互补的定义,分类讨论即可【详解】①如图,
      ②如图,
     综上所述,故答案为:130°或50°【点睛】本题考查了相交线所成角,对顶角相等,垂直的定义,求一个角的余角,补角,分类讨论是解题的关键.2、【分析】根据互为余角的两角之和为90°,即可得出答案.【详解】解:=65°14'15″,的余角=90°﹣65°14'15″=24°45'45″.故答案为:24°45'45″.【点睛】本题主要是考查了余角的定义以及角度的运算,熟记互余的两个角之和为90°,是解决本题的关键.3、109【分析】两角互为补角,和为180°,那么计算180°-∠1可求补角.【详解】解:设所求角为∠α∵∠α+∠1=180°,∠1=71,∴∠α=180°-71=109°.故答案为:109【点睛】此题考查的是角的性质,两角互余和为90°,互补和为180°.4、15°【分析】根据和为的两个角互为余角计算即可.【详解】解:75°的余角是90°﹣75°=15°.故答案为:15°.【点睛】此题主要考查余角的求解,解题的关键是熟知余角的定义与性质.5、123°27′【分析】本题考查互补和互余的概念,和为180度的两个角互为补角;和为90度的两个角互为余角.【详解】解:∠1与∠2互余,且∠1=∠1=33°27′,则∠2=90°-33°27′=56°33′,∠2的补角的度数为180°-56°33′=123°27′.故答案为:123°27′.【点睛】本题考查的是余角和补角的概念,如果两个角的和等于90°,就说这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角.三、解答题1、(1)见解析;(2)72°【解析】【分析】(1)等量代换得出∠3=∠DFE,平行线的判定得出EF//AB,可以推出∠ADE=∠B,即可判断结论;(2)由平分线的定义得出∠ADE=∠EDC=∠B,由平角的定义列出关于∠5+∠ADE+∠EDC=180°,求出∠B的度数,即可得出∠ADC的度数,由EF//AB即可求出∠2的度数.【详解】解:(1)∵,∠2+∠DFE=180°,∴∠3=∠DFEEF//AB∴∠ADE=∠1,又∵∴∠ADE=∠B,DE//BC(2)∵平分∴∠ADE=∠EDCDE//BC∴∠ADE=∠B∴∠5+∠ADE+∠EDC=180°,解得:∴∠ADC=2∠B=72°,EF//AB∴∠2=∠ADC=180°-108°=72°,【点睛】本题考查了平行线的判定和性质、邻补角、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2、(1)平行,理由见解析;(2)∠BAE+MCD=90°,理由见解析;(3)∠BAC=∠PQC+∠QPC,理由见解析.【解析】【分析】(1)先根据CE平分∠ACDAE平分∠BAC可得∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,根据平行线的判定定理即可得出结论;(2)如图,过EEFAB,由AB//CD可得EFABCD,根据平行线的性质可得∠BAE=∠AEF,∠FEC=∠DCE,可得∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;(3)如图,过点CCM//PQ,可得∠PQC=∠MCN,∠QPC=∠PCM,根据ABCD可知∠BAC+∠ACD=180°,根据∠PCQ+∠PCM+∠MCN=180°,可得∠QPC+∠PQC+∠PCQ=180°,即可得出∠BAC=∠PQC+∠QPC【详解】(1)∵CE平分∠ACDAE平分∠BAC∴∠BAC=2∠EAC,∠ACD=2∠ACE∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180°,ABCD(2)∠BAE+MCD=90°;理由如下:如图,过EEFABABCDEFABCD∴∠BAE=∠AEF,∠FEC=∠DCE∵∠AEC=∠AEF+∠FEC=90°,∴∠BAE+∠ECD=90°,∵∠MCE=∠ECD=MCD∴∠BAE+MCD=90°. (3)如图,过点CCM//PQ∴∠PQC=∠MCN,∠QPC=∠PCMABCD∴∠BAC+∠ACD=180°,∵∠PCQ+∠PCM+∠MCN=180°,∴∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC 【点睛】本题考查平行线的判定与性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.3、107°30′【解析】【分析】先求出∠1+∠2的和,再根据平角求出∠3,最后计算∠1+∠2﹣∠3即可.【详解】解:∵∠1=65°15′,∠2=78°30′,∠1+∠2+∠3=180°,∠1+∠2=65°15′+78°30′=143°45′,∴∠3=180°-∠1-∠2=180°-(∠1+∠2)=180°-143°45′=36°15′,∴∠1+∠2﹣∠3=143°45′-36°15′=107°30′.【点睛】本题考查角的单位互化,角的和差计算,平角,掌握角的单位互化方法,角的和差计算法则,平角应用是解题关键.4、(1)∠AOD+∠BOD=90°,理由见解析;(2)∠AOC+∠BOC=180°,理由见解析;(3)45°【解析】【分析】(1)由∠AOC=90°,得到∠AOD+∠COD=90°,再由OD平分∠BOC,可得∠BOC=2∠COD=2∠BOD,则∠AOD+∠BOD=90°;(2)由OC平分∠BOD,得到∠BOD=2∠COD=2∠BOC,再由∠AOC+∠COD=180°,即可得到∠AOC+∠BOC=180°;(3)由∠EPQ和∠FPQ互余,得到∠EPQ+∠FPQ=90°,由射线PM平分∠EPQ,射线PN平分∠FPQ,得到,则【详解】解:(1)∠AOD+∠BOD=90°,理由如下:∵∠AOC=90°,∴∠AOD+∠COD=90°,OD平分∠BOC∴∠BOC=2∠COD=2∠BOD∴∠AOD+∠BOD=90°;(2)∠AOC+∠BOC=180°,理由如下:OC平分∠BOD∴∠BOD=2∠COD=2∠BOC∵∠AOC+∠COD=180°,∴∠AOC+∠BOC=180°;(3)∵∠EPQ和∠FPQ互余,∴∠EPQ+∠FPQ=90°,∵射线PM平分∠EPQ,射线PN平分∠FPQ故答案为:45°.【点睛】本题主要考查了与余角和补角有关的计算,角平分线的定义,解题的关键在于能够熟练掌握相关知识进行求解.5、对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.【解析】【分析】先求出∠ABC=60°,即可证明∠ABC+∠2=180°得到AB∥CD,然后求出∠BCD=∠D 即可证明BC∥DE【详解】解∵∠1=60°(已知)ABC=∠1 (对顶角相等),∴∠ABC=60°(等量代换),又∵∠2=120°(已知),∴∠ABC+∠2=180°(等式的性质),AB∥CD (同旁内角互补,两直线平行),又∵∠2+∠BCD=180°,∴∠BCD=60°(等式的性质),∵∠D=60°(已知),∴∠BCD=∠D (等量代换),BC∥DE (内错角相等,两直线平行),故答案为:对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定,对顶角相等,解题的关键在于能够熟练掌握平行线的判定条件. 

    相关试卷

    初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试综合训练题:

    这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试综合训练题,共21页。试卷主要包含了下列说法中正确的是,命题,直线等内容,欢迎下载使用。

    2020-2021学年第七章 观察、猜想与证明综合与测试测试题:

    这是一份2020-2021学年第七章 观察、猜想与证明综合与测试测试题,共22页。试卷主要包含了如图,直线AB,下列说法正确的个数是等内容,欢迎下载使用。

    北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习题:

    这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习题,共24页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map