初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试巩固练习
展开这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试巩固练习,共20页。试卷主要包含了直线,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明专题测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列语句中,错误的个数是( )
①直线AB和直线BA是两条直线;
②如果,那么点C是线段AB的中点;
③两点之间,线段最短;
④一个角的余角比这个角的补角小.
A.1个 B.2个 C.3个 D.4个
2、如图,直线a∥b,Rt△ABC的直角顶点C在直线b上.若∠1=50°,则∠2的度数为( )
A.30° B.40° C.50° D.60°
3、可以用来说明命题“x2<y2,则x<y”是假命题的反例是( )
A.x=4,y=3 B.x=﹣1,y=2 C.x=﹣2,y=1 D.x=2,y=﹣3
4、如图,已知和都是直角,图中互补的角有( )对.
A.1 B.2 C.3 D.0
5、如图,直线AB,CD相交于点O,AOC30,OE⊥AB,OF是AOD的角平分线.若射线OE,OF分C别以18/s,3/s的速度同时绕点O顺时针转动,当射线OE,OF重合时,至少需要的时间是( )
A.8s B.11s C.s D.13s
6、如图,已知直线,相交于O,平分,,则的度数是( )
A. B. C. D.
7、直线、、、如图所示.若∠1=∠2,则下列结论错误的是( )
A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠5
8、如图,货轮O航行过程中,同时发现灯塔A和轮船B,灯塔A在货轮O北偏东40°的方向,∠AOE=∠BOW,则轮船B在货轮( )
A.西北方向 B.北偏西60° C.北偏西50° D.北偏西40°
9、如图,直线AB∥CD,直线AB、CD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为( )
A.30° B.40° C.50° D.60°
10、如图,,交于点,,,则的度数是( )
A.34° B.66° C.56° D.46°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、填写推理理由:
如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.
证明:∵CD∥EF,
∴∠DCB=∠2________.
∵∠1=∠2,
∴∠DCB=∠1________.
∴GD∥CB________.
∴∠3=∠ACB________.
2、如图,直线AB和直线CD相交于点O,且∠AOC=2∠BOC,则∠AOD的度数为____________.
3、如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=40°,则∠AEC=_____度.
4、判断正误:
(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角( )
(2)如果两个角相等,那么这两个角是对顶角( )
(3)有一条公共边的两个角是邻补角( )
(4)如果两个角是邻补角,那么它们一定互补( )
(5)有一条公共边和公共顶点,且互为补角的两个角是邻补角( )
5、若一个角的补角与这个角的余角之和为190°,则这个角的度数为_____度.
三、解答题(5小题,每小题10分,共计50分)
1、已知中,,,平分,求的度数.
2、如图,CDAB,点O在直线AB上,OE平分∠BOD,OF⊥OE,∠D=110°,求∠DOF的度数.
3、如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠B=60°.试求∠ADG的度数.
4、完成下面的证明.
如图,已知AD⊥BC,EF⊥BC,∠1=∠2,求证:∠BAC+∠AGD=180°.
证明:∵AD⊥BC,EF⊥BC(已知),
∴∠EFB=90°,∠ADB=90°( ),
∴∠EFB=∠ADB(等量代换),
∴EFAD( ),
∴∠1=∠BAD( ),
又∵∠1=∠2(已知),
∴∠2=∠ (等量代换),
∴DGBA(内错角相等,两直线平行),
∴∠BAC+∠AGD=180°( ).
5、已知直线AB和CD交于点O,∠AOC=α,∠BOE=90°,OF平分∠AOD.
(1)当α=30°时,则∠EOC=_________°;∠FOD=_________°.
(2)当α=60°时,射线OE′从OE开始以12°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求经过多少秒射线OE′与射线OF′第一次重合?
(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间为_________秒.
---------参考答案-----------
一、单选题
1、B
【分析】
根据直线的定义、线段中点的定义、线段的性质、余角与补角的定义分别判断.
【详解】
解:①直线AB和直线BA是同一条直线,故该项符合题意;
②如果,那么点C不一定是线段AB的中点,故该项符合题意;
③两点之间,线段最短,故该项不符合题意;
④一个角的余角比这个角的补角小,故该项不符合题意,
故选:B.
【点睛】
此题考查了直线的定义、线段中点的定义、线段的性质、余角与补角的定义,属于基础定义题型.
2、B
【分析】
由平角的定义可求得∠BCD的度数,再利用平行线的性质即可求得∠2的度数.
【详解】
解:如图所示:
∵∠1=50°,∠ACB=90°,
∴∠BCD=180°﹣∠1﹣∠BCD=40°,
∵a∥b,
∴∠2=∠BCD=40°.
故选:B.
【点睛】
本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.
3、D
【分析】
根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.
【详解】
解:当x=2,y=﹣3时,x2<y2,但x>y,
故选:D.
【点睛】
此题考查的是命题与定理,要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法.
4、B
【分析】
如图,延长BO至点E,根据平角的定义,由∠BOD=90°,得∠DOE=180°−∠DOB=90°,那么∠DOE=∠DOB=∠AOC=90°,故∠AOC+∠BOD=180°.由∠DOE=∠DOB=∠AOC=90°,得∠AOE+∠AOD=∠AOD+∠COD=∠DOC+∠BOC,那么∠AOE=∠COD,∠AOD=∠BOC.由∠AOE+∠AOB=180°,得∠COD+∠AOB=180°.
【详解】
解:如图,延长BO至点E.
∵∠BOD=90°,
∴∠DOE=180°−∠DOB=90°.
∴∠DOE=∠DOB=∠AOC=90°.
∴∠AOC+∠BOD=180°,∠AOE+∠AOD=∠AOD+∠COD=∠DOC+∠BOC.
∴∠AOE=∠COD,∠AOD=∠BOC.
∵∠AOE+∠AOB=180°,
∴∠COD+∠AOB=180°.
综上:∠AOC与∠BOD互补,∠AOB与∠COD互补,共2对.
故选:B.
【点睛】
本题主要考查补角,熟练掌握补角的定义是解决本题的关键.
5、D
【分析】
设首次重合需要的时间为t秒,则OE比OF要多旋转120゜+75゜,由此可得方程,解方程即可.
【详解】
∵∠BOD=∠AOC=30゜,OE⊥AB
∴∠EOD=∠EOB+∠BOD=90゜+30゜=120゜,∠AOD=180゜ - ∠AOC=150゜
∵OF平分∠AOD
∴
∴∠EOD+∠DOF=120゜+75゜
设OE、OF首次重合需要的时间为t秒,则由题意得:18t−3t=120+75
解得:t=13
即射线OE,OF重合时,至少需要的时间是13秒
故选:D
【点睛】
本题考查了角平分线的性质,补角的含义,垂直的定义,角的和差运算,运用了方程思想来解决,本题的实质是行程问题中的追及问题.
6、C
【分析】
先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.
【详解】
解:∵OA平分∠EOC,∠EOC=100°,
∴∠AOC=∠EOC=50°,
∴∠BOC=180°﹣∠AOC=130°.
故选:C.
【点睛】
本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.
7、D
【分析】
根据平行线的判定与性质、对顶角相等逐项判断即可.
【详解】
解:∵∠1=∠2,
∴AB∥CD,故A正确,不符合题意;
∴∠4=∠5,故C正确,不符合题意;
∵∠EFB与∠3是对顶角,
∴∠EFB=∠3,故B正确,
无法判断∠3=∠5,故D错误,符合题意,
故选:D.
【点睛】
本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.
8、D
【分析】
根据题意得:∠AON=40°,再由等角的余角相等,可得∠BON=∠AON=40°,即可求解.
【详解】
解:根据题意得:∠AON=40°,
∵∠AOE=∠BOW,∠AON+∠AOE=90°,∠BON+∠BOW=90°,
∴∠BON=∠AON=40°,
∴轮船B在货轮的北偏西40°方向.
故选:D
【点睛】
本题主要考查了余角的性质,方位角,熟练掌握等角的余角相等是解题的关键.
9、C
【分析】
由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.
【详解】
解:由题意,
∵∠BMN与∠AME是对顶角,
∴∠BMN=∠AME=130°,
∵AB∥CD,
∴∠BMN+∠DNM=180°,
∴∠DNM=50°;
故选:C.
【点睛】
本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.
10、C
【分析】
由余角的定义得出的度数,由两直线平行内错角相等即可得出结论.
【详解】
解:∵,,
∴,
∵,
∴,
故选:C
【点睛】
本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.
二、填空题
1、两直线平行,同位角相等 等量代换 内错角相等,两直线平行 两直线平行,同位角相等
【分析】
根据平行线的性质得出,求出,根据平行线的判定得出,利用平行线的性质即可得出.
【详解】
证明:
∵,
∴(两直线平行,同位角相等)
∵,
∴.(等量代换)
∴(内错角相等,两直线平行).
∴(两直线平行,同位角相等).
故答案为:①两直线平行,同位角相等;②等量代换;③内错角相等,两直线平行;④两直线平行,同位角相等.
【点睛】
题目主要考查平行线的判定定理及性质,理解题意,结合图形,综合运用判定的性质定理是解题关键.
2、
【分析】
根据,可得,再根据对顶角相等即可求出的度数.
【详解】
解:∵,
∴
∴
∵
∴
故答案为:
【点睛】
本题主要考查了邻补角、对顶角的相关知识,熟练运用邻补角、对顶角的相关知识是解答此题的关键.
3、70
【分析】
根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,再根据平行线性质求出∠AEC的度数即可.
【详解】
解:∵ABCD,
∴∠C+∠CAB=180°,
∵∠C=40°,
∴∠CAB=180°-40°=140°,
∵AE平分∠CAB,
∴∠EAB=70°,
∵ABCD,
∴∠AEC=∠EAB=70°,
故答案为70.
【点睛】
本题考查角平分线的定义和平行线的性质,解题的关键是熟练掌握两条平行线被第三条直线所截,同旁内角互补.
4、(1)×;(2)×;(3)×;(4)√;(5)×
【分析】
根据对顶角与邻补角的定义与性质分析判断即可求解.
【详解】
(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;
(2)如果两个角相等,那么这两个角不一定是对顶角,错误;
(3)有一条公共边的两个角不一定是邻补角,错误;
(4)如果两个角是邻补角,那么它们一定互补,正确;
(5)有一条公共边和公共顶点,且互为补角的两个角不一定是邻补角,错误;
故答案为:(1)×;(2)×;(3)×;(4)√;(5)×.
【点睛】
本题主要考查了对顶角的与邻补角的性质,是基础题,熟记概念与性质是解题的关键,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角.
5、40
【分析】
首先设这个角为x°,则它的补角为(180-x)°,它的余角为(90-x)°,由题意得:这个角的补角的度数+它的余角的度数=190,根据等量关系列出方程,再解即可.
【详解】
解:设这个角为x°,则它的补角为(180-x)°,它的余角为(90-x)°,由题意得:
(180-x)+(90-x)=190,
解得:x=40,
故答案为: 40.
【点睛】
本题考查余角和补角,关键是掌握如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.
三、解答题
1、25°
【解析】
【分析】
由两直线平行同位角相等,得出,由角平分线的性质得出,即可得出答案.
【详解】
解:∵,
∴,
∵平分,
∴
∴.
【点睛】
本题考查了平行线的性质和角平分线的性质,熟练掌握各性质是解得此题的关键.
2、
【解析】
【分析】
根据平行线的性质求得,根据角平分线和垂直求解即可.
【详解】
解:∵
∴
∵OE平分∠BOD
∴
又∵OF⊥OE
∴
∴
故答案为:
【点睛】
此题考查了平行线、角平分线以及垂直的性质,解题的关键是掌握并利用它们的性质进行求解.
3、60°
【解析】
【分析】
由CD⊥AB,FE⊥AB,则,则∠2=∠4,从而证得,得∠B=∠ADG,则答案可解.
【详解】
解:CD⊥AB于D,FE⊥AB于E,
∴,
∴∠2=∠4,
又∵∠1=∠2,
∴∠1=∠4,
∴,
∴.
【点睛】
本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.
4、垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD;两直线平行,同旁内角互补
【解析】
【分析】
先由垂直的定义得出两个90°的同位角,根据同位角相等判定两直线平行,根据两直线平行,同位角相等得到,再根据等量代换得出,根据内错角相等,两直线平行,最后根据两直线平行,同旁内角互补即可判定.
【详解】
解:∵AD⊥BC,EF⊥BC(已知),
∴∠EFB=90°,∠ADB=90°(垂直的定义),
∴∠EFB=∠ADB(等量代换),
∴EFAD(同位角相等,两直线平行),
∴∠1=∠BAD(两直线平行,同位角相等),
又∵∠1=∠2(已知),
∴∠2=∠BAD(等量代换),
∴DGBA(内错角相等,两直线平行),
∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).
故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD;两直线平行,同旁内角互补
【点睛】
本题考查的是平行线的性质及判定,熟练掌握平行线的性质定理和判定定理是关键.
5、(1)60,75;(2)秒;(3)3或12或21或30
【解析】
【分析】
(1)根据题意利用互余和互补的定义可得:∠EOC与∠FOD的度数.
(2)由题意先根据,得出∠EOF=150°,则射线OE'、OF'第一次重合时,其OE'运动的度数+OF'运动的度数=150,列式解出即可;
(3)根据题意分两种情况在直线OE的左边和右边,进而根据其夹角列4个方程可得时间.
【详解】
解:(1)∵∠BOE=90°,
∴∠AOE=90°,
∵∠AOC=α=30°,
∴∠EOC=90°-30°=60°,
∠AOD=180°-30°=150°,
∵OF平分∠AOD,
∴∠FOD=∠AOD=×150°=75°;
故答案为:60,75;
(2)当,.
设当射线与射线重合时至少需要t秒,
可得,解得:;
答:当射线与射线重合时至少需要秒;
(3)设射线转动的时间为t秒,
由题意得:或或或,
解得:或12或21或30.
答:射线转动的时间为3或12或21或30秒.
【点睛】
本题考查对顶角相等,邻补角互补的定义,角平分线的定义,角的计算,第三问有难度,熟记相关性质是解题的关键,注意要分情况讨论.
相关试卷
这是一份初中第七章 观察、猜想与证明综合与测试测试题,共23页。试卷主要包含了如图,,交于点,,,则的度数是,直线等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课堂检测,共23页。试卷主要包含了下列说法不正确的是,下列说法中,真命题的个数为,若的补角是125°,则的余角是等内容,欢迎下载使用。
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试精练,共24页。试卷主要包含了若∠α=55°,则∠α的余角是,下列说法中正确的个数是等内容,欢迎下载使用。