初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试达标测试
展开这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试达标测试,共20页。试卷主要包含了如图,C,下列命题,下列说法中,假命题的个数为等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列语句中,错误的个数是( )
①直线AB和直线BA是两条直线;
②如果,那么点C是线段AB的中点;
③两点之间,线段最短;
④一个角的余角比这个角的补角小.
A.1个 B.2个 C.3个 D.4个
2、若的补角是125°,则的余角是( )
A.90° B.54° C.36° D.35°
3、如图,直线l1l2,直线l3与l1、l2分别相交于点A,C,BC⊥l3交l1于点B,若∠2=30°,则∠1的度数为( )
A.30° B.40° C.50° D.60°
4、如果两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别是( )
A.48°,72° B.72°,108°
C.48°,72°或72°,108° D.80°,120°
5、如图,C、D在线段BE上,下列说法:
①直线CD上以B、C、D、E为端点的线段共有6条;
②图中至少有2对互补的角;
③若∠BAE=90°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和360°;
④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有( )
A.1个 B.2个 C.3个 D.4个
6、已知一个角等于它的补角的5倍,那么这个角是( )
A.30° B.60° C.45° D.150°
7、下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( )
A.1个 B.2个 C.3个 D.4个
8、下列说法中,假命题的个数为( )
①两条直线被第三条直线所截,同位角相等
②如果两条直线都与第三条直线垂直,那么这两条直线互相平行
③过一点有且只有一条直线与这条直线平行
④在同一平面内,过一点有且只有一条直线与已知直线垂直
A.1个 B.2个 C.3个 D.4个
9、用反证法证明命题“在同一平面内,若 ,则 a∥c”时,首先应假设( )
A.a∥b B.b∥c C.a 与 c 相交 D.a 与 b
10、如图,下列给定的条件中,不能判定的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图所示,过点P画直线a的平行线b的作法的依据是___________.
2、如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=40°,则∠AEC=_____度.
3、一个角的度数是42°36′,则它的余角的度数为_____°.(结果用度表示)
4、如图,∠AOB与∠BOC互补,OM平分∠BOC,且∠BOM=35°,则∠AOB=____ °.
5、已知:如图,直线AB、CD被直线GH所截,,求证: ABCD.完成下面的证明:
证明:∵AB被直线GH所截,
∴_____
∵
∴______
∴______________(________)(填推理的依据).
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知∠AOC=90°,∠BOD=90°,∠BOC=38°19′,求∠AOD的度数.
2、如图,AB//CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合),∠ADC=70°.设∠BED=n°.
(1)若点B在点A的左侧,求∠ABC的度数(用含n的代数式表示);
(2)将(1)中的线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠ABC的度数是否改变.若改变,请求出∠ABC的度数(用含n的代数式表示);若不变,请说明理由.
3、已知:锐角∠AOB.
(1)若∠AOB=65°,则∠AOB的余角的度数为________度.
(2)若∠AOB=53°17ʹ,则∠AOB的补角的度数为________.
(3)若∠AOB=31°12ʹ,计算:∠AOB=___________.
(4)若∠AOB=20°21ʹ,计算:3∠AOB.
4、如图,直线AB、CD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7.
(1)求∠DOE的度数;
(2)若∠EOF是直角,求∠COF的度数.
5、如图,已知点O是直线AB上一点,射线OM平分.
(1)若,则______度;
(2)若,求的度数.
---------参考答案-----------
一、单选题
1、B
【分析】
根据直线的定义、线段中点的定义、线段的性质、余角与补角的定义分别判断.
【详解】
解:①直线AB和直线BA是同一条直线,故该项符合题意;
②如果,那么点C不一定是线段AB的中点,故该项符合题意;
③两点之间,线段最短,故该项不符合题意;
④一个角的余角比这个角的补角小,故该项不符合题意,
故选:B.
【点睛】
此题考查了直线的定义、线段中点的定义、线段的性质、余角与补角的定义,属于基础定义题型.
2、D
【分析】
根据题意,得=180°-125°,的余角是90°-(180°-125°)=125°-90°,选择即可.
【详解】
∵的补角是125°,
∴=180°-125°,
∴的余角是90°-(180°-125°)=125°-90°=35°,
故选D.
【点睛】
本题考查了补角,余角的计算,正确列出算式是解题的关键.
3、D
【分析】
根据平行线的性质和垂直的定义解答即可.
【详解】
解:∵BC⊥l3交l1于点B,
∴∠ACB=90°,
∵∠2=30°,
∴∠CAB=180°−90°−30°=60°,
∵l1l2,
∴∠1=∠CAB=60°.
故选:D.
【点睛】
此题考查平行线的性质,关键是根据平行线的性质解答.
4、B
【分析】
根据题意可得这两个角互补,设其中一个角为x,则另一个角为,由两个角之间的数量关系列出一元一次方程,求解即可得.
【详解】
解:∵两个角的两边两两互相平行,
∴这两个角可能相等或者两个角互补,
∵一个角的等于另一个角的,
∴这两个角互补,
设其中一个角为x,则另一个角为,
根据题意可得:,
解得:,,
故选:B.
【点睛】
题目主要考查平行线的性质、角的数量关系、一元一次方程等,理解题意,列出方程是解题关键.
5、B
【分析】
按照两个端点确定一条线段即可判断①;根据补角的定义即可判断②;根据角的和差计算机可判断③;分两种情况讨论:当点F在线段CD上时点F到点B、C、D、E的距离之和最小,当点F和E重合时,点F到点B、C、D、E的距离之和最大计算即可判断④.
【详解】
解:①以B、C、D、E为端点的线段BC、BD、BE、CE、CD、DE共6条,故此说法正确;
②图中互补的角就是分别以C、D为顶点的两对邻补角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故此说法正确;
③由∠BAE=90°,∠CAD=40°,根据图形可以求出∠BAC+∠DAE+∠DAC+∠BAE+∠BAD+∠CAE=3∠BAE+∠CAD=310°,故此说法错误;
④如图1,当F不在CD上时,FB+FC+FD+FE=BE+CD+2FC,如图2当F在CD上时,FB+FC+FD+FE=BE+CD,如图3当F与E重合时,FB+FC+FE+FD=BE+CD+2ED,同理当F与B重合时,FB+FC+FE+FD=BE+CD+2BC,
∵BC=2,CD=DE=3,
∴当F在的线段CD上最小,则点F到点B、C、D、E的距离之和最小为FB+FE+FD+FC=2+3+3+3=11,当F和E重合最大则点F到点B、C、D、E的距离之和FB+FE+FD+FC=17,故此说法错误.
故选B.
【点睛】
本题主要考查了线段的数量问题,补角的定义,角的和差,线段的和差,解题的关键在于能够熟练掌握相关知识进行求解.
6、D
【分析】
列方程求出这个角即可.
【详解】
解:设这个角为x,
列方程得:x=5(180°−x)
解得x=150°.
故选:D.
【点睛】
本题考查了补角,若两个角的和等于180°,则这两个角互补,列方程求出这个角是解题的关键.
7、C
【分析】
根据平行线的性质与判定可以判断①②④,根据垂线段最短可以判断③.
【详解】
解:①平面内,垂直于同一条直线的两直线平行,是真命题;
②经过直线外一点,有且只有一条直线与这条直线平行,是真命题;
③垂线段最短,是真命题;
④两直线平行,同旁内角互补,是假命题,
∴真命题有3个,
故选C.
【点睛】
本题主要考查了判断命题真假,熟知相关知识是解题的关键.
8、C
【分析】
根据平行线的判定与性质、垂直的性质逐个判断即可得.
【详解】
解:①两条平行线被第三条直线所截,同位角相等,则原说法错误,是假命题;
②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,则原说法错误,是假命题;
③过直线外一点有且只有一条直线与这条直线平行,则原说法错误,是假命题;
④在同一平面内,过一点有且只有一条直线与已知直线垂直,则原说法正确,是真命题;
综上,假命题的个数是3个,
故选:C.
【点睛】
本题考查了平行线的判定与性质、垂直的性质,熟练掌握各性质是解题关键.
9、C
【分析】
用反证法解题时,要假设结论不成立,即假设a与c不平行(或a与c相交).
【详解】
解:原命题“在同一平面内,若a⊥b,c⊥b,则a∥c”,
用反证法时应假设结论不成立,
即假设a与c不平行(或a与c相交).
故答案为:C.
【点睛】
此题考查了反证法证明的步骤:(1)假设原命题结论不成立;(2)根据假设进行推理,得出矛盾,说明假设不成立;(3)原命题正确.
10、A
【分析】
根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.
【详解】
解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;
B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;
C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;
D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;
故选A.
【点睛】
本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.
二、填空题
1、内错角相等,两直线平行
【分析】
根据平行线的判定方法解决问题即可.
【详解】
解:由作图可知,
,
(内错角相等两直线平行),
故答案为:内错角相等,两直线平行.
【点睛】
本题考查作图,平行线的判定等知识,熟练掌握平行线的判定定理是解题的关键,属于中考常考题型.
2、70
【分析】
根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,再根据平行线性质求出∠AEC的度数即可.
【详解】
解:∵ABCD,
∴∠C+∠CAB=180°,
∵∠C=40°,
∴∠CAB=180°-40°=140°,
∵AE平分∠CAB,
∴∠EAB=70°,
∵ABCD,
∴∠AEC=∠EAB=70°,
故答案为70.
【点睛】
本题考查角平分线的定义和平行线的性质,解题的关键是熟练掌握两条平行线被第三条直线所截,同旁内角互补.
3、47.4
【分析】
根据余角的定义即可得到结论.
【详解】
解:这个角的余角=90°-42°36′=47°24′=47.4°,
故答案为:47.4.
【点睛】
本题考查了余角和补角,熟记余角的定义及度分秒的换算是解题的关键.
4、110
【分析】
根据补角定义可得∠AOB+∠BOC=180°,再根据角平分线定义可得∠BOC的度数,然后可得∠AOB的度数.
【详解】
解:∵∠AOB与∠BOC互补,
∴∠AOB+∠BOC=180°,
∵OM平分∠BOC,
∴∠BOC=2∠BOM=70°,
∴∠AOB=110°,
故答案为:110.
【点睛】
此题主要考查了补角和角平分线,关键是掌握两个角和为180°,这两个角称为互为补角.
5、3 180° AB CD 同旁内角互补,两直线平行
【分析】
先根据对顶角相等求得∠3的度数,进而得到∠2+∠3=180°,即可判定AB∥CD.
【详解】
证明:∵AB被直线GH所截,∠1=112°,
∴∠1=∠3=112°
∵∠2=68°,
∴∠2+∠3=180°,
∴AB∥CD,(同旁内角互补,两直线平行)
故答案为∠3,180°,AB,CD,同旁内角互补,两直线平行.
【点睛】
本题主要考查了平行线的判定,两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.
三、解答题
1、141°41′
【解析】
【分析】
利用角的和差关系计算,先求得∠COD=51°41′,再由∠AOD=∠AOC+∠COD即可求解.
【详解】
解:∵∠BOD=90°,∠BOC=38°19′
∴∠COD=∠BOD-∠BOC=51°41′
∵∠AOC=90°
∴∠AOD=∠AOC+∠COD=141°41′
答:∠AOD的度数为141°41′.
【点睛】
本题主要考查了余角,正确得出∠COD的度数是解题关键.
2、(1);(2)∠ABC的度数改变,度数为.
【解析】
【分析】
(1)过点E作,根据平行线性质推出∠ABE=∠BEF,∠CDE=∠DEF,根据角平分线定义得出,∠CDE=∠ADC=35°,求出∠BEF的度数,进而可求出∠ABC的度数;
(2)过点E作,根据角平分线定义得出,∠CDE=∠ADC=35°,求出∠BEF的度数,进而可求出∠ABC的度数.
【详解】
(1)如图1,过点作.
∵,
∴,
∴.
∵平分平分,,
∴.
∵,
∴,
∴.
(2)的度数改变.
画出的图形如图2,过点作.
∵平分,平分,,
∴ .
∵,
∴,
∴.
∵,
∴,
∴,
∴.
【点睛】
本题考查了平行线性质和角平分线定义的应用,主要考查学生的推理能力.熟练掌握平行线的判定与性质是解答本题的关键.
3、(1)25°;(2)126°43ʹ;(3)15°36ʹ;(4)61°3ʹ.
【解析】
【分析】
(1)根据余角的性质,即可求解;
(2)根据补角的性质,即可求解;
(3)用 乘以∠AOB,即可求解;
(4)用3乘以∠AOB,即可求解.
【详解】
解:(1)∠AOB的余角的度数为
(2) ;
(3) ;
(4)3∠AOB=3×20°21ʹ=60°63ʹ=61°3ʹ.
【点睛】
本题主要考查了余角和补角,角的倍分关系,熟练掌握余角和补角的性质,角的倍分关系是解题的关键.
4、(1);(2)
【解析】
【分析】
(1)由∠AOC:∠AOD=3:7,先求解 再利用对顶角相等求解 结合角平分线的定义可得答案;
(2)先求解 再利用平角的定义可得答案.
【详解】
解:(1) ∠AOC:∠AOD=3:7,
OE平分∠BOD,
(2)
【点睛】
本题考查的是角平分线的定义,对顶角的性质,平角的定义,垂直的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.
5、(1),(2)
【解析】
【分析】
(1)根据平角的定义可求;
(2)根据和,代入解方程求出即可.
【详解】
解:(1)∵,
∴,
故答案为:.
(2)∵OM平分,
∴,
∵,
∴,
∴,
∴.
【点睛】
本题考查了角平分线的有关计算,解题关键是准确识图,弄清角之间的数量关系.
相关试卷
这是一份2021学年第七章 观察、猜想与证明综合与测试精练,共22页。试卷主要包含了下列说法正确的个数是,若的补角是150°,则的余角是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练,共22页。试卷主要包含了以下命题是假命题的是等内容,欢迎下载使用。
这是一份初中数学第七章 观察、猜想与证明综合与测试练习,共21页。试卷主要包含了下列命题是假命题的有,如图,直线AB等内容,欢迎下载使用。