2020-2021学年第七章 观察、猜想与证明综合与测试练习
展开这是一份2020-2021学年第七章 观察、猜想与证明综合与测试练习,共18页。试卷主要包含了若∠α=55°,则∠α的余角是,如图,不能推出a∥b的条件是,如图,直线AB,下列说法中正确的是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列命题中,是真命题的是( )
A.同位角相等 B.同角的余角相等
C.相等的角是对顶角 D.有且只有一条直线与已知直线垂直
2、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )
A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°
3、下列有关“线段与角”的知识中,不正确的是( )
A.两点之间线段最短 B.一个锐角的余角比这个角的补角小
C.互余的两个角都是锐角 D.若线段,则是线段的中点
4、若∠α=55°,则∠α的余角是( )
A.35° B.45° C.135° D.145°
5、如图,已知直线,相交于O,平分,,则的度数是( )
A. B. C. D.
6、下列各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
7、如图,不能推出a∥b的条件是( )
A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°
8、如图,直线AB、CD相交于点O,EO⊥AB于点O,∠EOC=35°,则∠AOD的度数为( )
A.55° B.125° C.65° D.135°
9、下列说法中正确的是( )
A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短
C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点
10、直线、、、如图所示.若∠1=∠2,则下列结论错误的是( )
A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠5
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若∠A=20°18',则∠A的补角的大小为__________.
2、若与互余,且,则______.
3、如图,将两块三角板的直角顶点重合后叠放在一起,若∠1=40°,则∠2=_____°.
4、已知,则的补角 ______ .
5、如图,已知,CE平分,,则______°.
三、解答题(5小题,每小题10分,共计50分)
1、如图,直线、相交于点,是平分线,,求度数.
2、如图,在下列解答中,填写适当的理由或数学式:
(1)∵∠A=∠CEF,( 已知 )
∴________∥________; (________)
(2)∵∠B+∠BDE=180°,( 已知 )
∴________∥________;(________)
(3)∵DE∥BC,( 已知 )
∴∠AED=∠________; (________)
(4)∵AB∥EF,( 已知 )
∴∠ADE=∠________.(________)
3、如图所示,AB//CD,点E为两条平行线外部一点,F为两条平行线内部一点,G、H分别为AB、CD上两点,GB平分∠EGF,HF平分∠EHD,且2∠F与∠E互补,求∠EGF的大小.
4、推理填空:如图,直线,并且被直线所截,交和于点,平分,平分,使说明.
解:∵,
∴( )
∵平分,平分.
∴, ( )
∵
∴( )
∵
∴( )
5、如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.
---------参考答案-----------
一、单选题
1、B
【分析】
利用平行线的性质、对顶角的性质、垂线的定义及互余的定义分别对每个选项进行判断后即可确定正确的选项.
【详解】
解:A、应该是两直线平行,同位角相等,则原命题是假命题,故本选项不符合题意;
B、同角的余角相等,是真命题,故本选项符合题意;
C、相等的角不一定是对顶角,则原命题是假命题,故本选项不符合题意;
D、应该是在同一平面内,过一点有且只有一条直线与已知直线垂直,则原命题是假命题,故本选项不符合题意;
故选:B.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质、垂线的定义及互补的定义等知识.
2、D
【分析】
同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.
【详解】
解:(同位角相等,两直线平行),故A不符合题意;
∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;
(同位角相等,两直线平行)故C不符合题意;
∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,
所以不能判定 故D符合题意;
故选D
【点睛】
本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.
3、D
【分析】
根据线段的性质及余角补角的定义解答.
【详解】
解:两点之间线段最短,故A选项不符合题意;
一个锐角的余角比这个角的补角小,故B选项不符合题意;
互余的两个角都是锐角,故C选项不符合题意;
若线段,则不一定是线段的中点,故D选项符合题意;
故选:D.
【点睛】
此题考查线段的性质,余角与补角的定义,熟记定义及线段的性质是解题的关键.
4、A
【分析】
根据余角的定义即可得.
【详解】
由余角定义得∠α的余角为90°减去55°即可.
解:由余角定义得∠α的余角等于90°﹣55°=35°.
故选:A.
【点睛】
本题考查了余角的定义,熟记定义是解题关键.
5、C
【分析】
先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.
【详解】
解:∵OA平分∠EOC,∠EOC=100°,
∴∠AOC=∠EOC=50°,
∴∠BOC=180°﹣∠AOC=130°.
故选:C.
【点睛】
本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.
6、B
【分析】
根据对顶角的定义作出判断即可.
【详解】
解:根据对顶角的定义可知:只有B选项的是对顶角,其它都不是.
故选:B.
【点睛】
本题考查对顶角的定义,解题关键是明确两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
7、B
【分析】
根据平行线的判定方法,逐项判断即可.
【详解】
解:、和是一对内错角,当时,可判断,故不符合题意;
、和是邻补角,当时,不能判定,故符合题意;
、和是一对同位角,当时,可判断,故不合题意;
、和是一对同旁内角,当时,可判断,故不合题意;
故选B.
【点睛】
本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.
8、B
【分析】
先根据余角的定义求得,进而根据邻补角的定义求得即可.
【详解】
EO⊥AB,∠EOC=35°,
,
.
故选:B.
【点睛】
本题考查了垂直的定义,求一个角的余角、补角,掌握求一个角的余角与补角是解题的关键.
9、B
【分析】
根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.
【详解】
解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;
B.两点之间的所有连线中,线段最短,正确;
C.相等的角不一定是对顶角,故不符合题意;
D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;
故选:B.
【点睛】
本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.
10、D
【分析】
根据平行线的判定与性质、对顶角相等逐项判断即可.
【详解】
解:∵∠1=∠2,
∴AB∥CD,故A正确,不符合题意;
∴∠4=∠5,故C正确,不符合题意;
∵∠EFB与∠3是对顶角,
∴∠EFB=∠3,故B正确,
无法判断∠3=∠5,故D错误,符合题意,
故选:D.
【点睛】
本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.
二、填空题
1、159°42'(或159.7°)
【分析】
根据补角的定义可直接进行求解.
【详解】
解:由∠A=20°18',则∠A的补角为;
故答案为159°42'.
【点睛】
本题主要考查补角,熟练掌握求一个角的补角是解题的关键.
2、69°
【分析】
由题意可设∠α=2x,∠β=3x,根据与互余可得关于x的方程,解方程即可求出x,然后代值计算即可;
【详解】
解:因为,
所以设∠α=2x,∠β=3x,
因为与互余,
所以2x+3x=90°,解得x=18°,
所以∠α=36°,∠β=54°,
所以;
故答案为69°.
【点睛】
本题考查了互余的概念和简单的一元一次方程的应用,属于基本题目,熟练掌握基本知识,掌握求解的方法是关键.
3、
【分析】
根据图形可得等角的余角相等,进而即可求得.
【详解】
解:如图,
∵将两块三角板的直角顶点重合后叠放在一起,
∴
故答案为:
【点睛】
本题考查了同角的余角相等,读懂图形是解题的关键.
4、
【分析】
根据补角的定义,求解即可,和为的两个角互为补角.
【详解】
解:,所以的补角
故答案为.
【点睛】
此题考查了补角的定义,解题的关键是掌握补角的定义.
5、65
【分析】
由平行线的性质先求解再利用角平分线的定义可得答案.
【详解】
解: , ,
CE平分,
故答案为:
【点睛】
本题考查的是角平分线的定义,平行线的性质,掌握“两直线平行,同旁内角互补”是解本题的关键.
三、解答题
1、77°
【解析】
【分析】
由题意根据平角的定义以及角平分线的性质可以求得∠AOE的度数.
【详解】
解:∵OE是∠AOD的平分线,∠AOC=26°,
∴∠AOD=180°-∠AOC=154°,
∴∠AOE=∠AOD=77°.
【点睛】
本题考查角平分线的定义,邻补角、对顶角,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想进行解答.
2、(1)AB;EF;同位角相等,两直线平行;(2)DE;BC;同旁内角互补,两直线平行;(3)C;两直线平行,同位角相等;(4)DEF;两直线平行,内错角相等
【解析】
【分析】
(1)根据平行线的判定定理:同位角相等,两直线平行,即可得;
(2)根据平行线的判定定理:同旁内角互补,两直线平行,即可得;
(3)根据平行线的性质:两直线平行,同位角相等,即可得;
(4)根据平行线的性质:两直线平行,内错角相等,即可得.
【详解】
解:(1)∵,(已知)
∴,(同位角相等,两直线平行);
(2)∵,(已知)
∴,(同旁内角互补,两直线平行);
(3)∵,(已知)
∴,(两直线平行,同位角相等)
(4)∵,(已知)
∴(两直线平行,内错角相等).
故答案为:(1)AB;EF;同位角相等,两直线平行;(2)DE;BC;同旁内角互补,两直线平行;(3)C;两直线平行,同位角相等;(4)DEF;两直线平行,内错角相等.
【点睛】
题目主要考查平行线的判定定理和性质,熟练掌握理解平行线的性质定理并结合图形是解题关键.
3、∠EGF=120°.
【解析】
【分析】
过点F作FM∥AB,设AB于EH的交点为N,先设,则,由题意及平行线的性质得,,得到,,由于与互补,得到,最终问题可求解
【详解】
解:过点F作FM∥AB,设AB于EH的交点为N,如图所示:
设,
∵GB平分∠EGF,HF平分∠EHD,
∴,
∵AB//CD,
∴FM∥AB∥CD,
∴,
∴,,
即,,
∵与互补,
∴,
∴,
∴,
∴.
【点睛】
本题考查平行线的性质及三角形外角的性质,解题的关键是设,且由题意得到x,y的关系.
4、两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.
【解析】
【分析】
利用平行线的性质定理和判定定理解答即可.
【详解】
解:∵AB∥CD,
∴∠AME=∠CNE.(两直线平行,同位角相等),
∵MP平分∠AME,NQ平分∠CNE,
∴∠1=∠AME,=∠CNE.( 角平分线的定义),
∵∠AME=∠CNE,
∴∠1=∠2.(等量代换),
∵∠1=∠2,
∴MP∥NQ.(同位角相等,两直线平行).
故答案为:两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.
【点睛】
此题考查的是平行线的判定及性质,掌握平行线的性质定理和判定定理是解决此题的关键.
5、∠BOC的补角有两个∠BOD和∠AOC;∠BOC的邻补角为∠AOC;∠BOC没有对顶角.
【解析】
【分析】
由题意直接根据补角,邻补角及对顶角的定义进行分析即可找出.
【详解】
解:因为∠BOC+∠AOC=180º(平角定义),
所以∠AOC是∠BOC的补角,
∠AOD=∠BOC(已知),
所以∠BOC+∠BOD=180º.
所以∠BOD是∠BOC的补角.
所以∠BOC的补角有两个:∠BOD和∠AOC.
因为∠AOC和∠BOC相邻,
所以∠BOC的邻补角为:∠AOC.
∠BOC没有对顶角.
【点睛】
本题考查补角,邻补角及对顶角的定义,熟练掌握补角,邻补角及对顶角的定义是解题的关键.
相关试卷
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步达标检测题,共22页。试卷主要包含了下列语句中,错误的个数是,下列说法中正确的个数是,下列命题中是真命题的是,下列语句中叙述正确的有等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试精练,共20页。试卷主要包含了如图,C,若的补角是150°,则的余角是等内容,欢迎下载使用。
这是一份初中数学第七章 观察、猜想与证明综合与测试课后练习题,共20页。试卷主要包含了下列语句中,是命题的是,一个角的补角比这个角的余角大.,下列命题是假命题的有等内容,欢迎下载使用。