数学七年级下册第七章 观察、猜想与证明综合与测试达标测试
展开
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试达标测试,共23页。试卷主要包含了直线,下列命题等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线AB,CD相交于点O,AOC30,OE⊥AB,OF是AOD的角平分线.若射线OE,OF分C别以18/s,3/s的速度同时绕点O顺时针转动,当射线OE,OF重合时,至少需要的时间是( )A.8s B.11s C.s D.13s2、如图,直线AB、CD相交于点O,OE平分∠BOC,若∠BOD:∠BOE=1:2,则∠AOE的大小为( )A.72° B.98°C.100° D.108°3、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为( )A.164°12' B.136°12' C.143°88' D.143°48'4、直线、、、如图所示.若∠1=∠2,则下列结论错误的是( )A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠55、下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( )A.1个 B.2个 C.3个 D.4个6、如图,已知直线,相交于O,平分,,则的度数是( )A. B. C. D.7、如图,O是直线AB上一点,OE平分∠AOB,∠COD=90°,则图中互余的角有( )对.
A.5 B.4 C.3 D.28、下列各图中,∠1与∠2是对顶角的是( )A. B.C. D.9、若∠α=73°30',则∠α的补角的度数是( )A.16°30' B.17°30' C.106°30' D.107°30'10、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为( )
A.西偏北50° B.北偏西50° C.东偏北30° D.北偏东30°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、_________°,的余角是________.2、如图,直线,三角尺(30°,60,90°)如图摆放,若∠1=52°,则∠2的度数为 _____.
3、如图,将一块直角三角板与一张两边平行的纸条按照如图所示的方式放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2=∠3;④∠4+∠5=180°.其中正确的是________.(填序号)4、如图,过直线AB上一点O作射线OC,∠BOC=29°38′,OD平分∠AOC,则∠DOC的度数为 _____.5、如图,AB∥CD,∠EGB=50°,则∠CHG的大小为 _____.三、解答题(5小题,每小题10分,共计50分)1、小明同学遇到这样一个问题:如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.求证:∠BED=∠B+∠D.小亮帮助小明给出了该问的证明.证明:过点E作EF∥AB则有∠BEF=∠B∵AB∥CD∴EF∥CD∴∠FED=∠D∴∠BED=∠BEF+∠FED=∠B+∠D请你参考小亮的思考问题的方法,解决问题:(1)直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=40°,求∠APB的度数.(2)拓展:如图③,若点P在直线EF上,连接PA、PB(BD<AC),直接写出∠PAC、∠APB、∠PBD之间的数量关系.2、如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.3、如图,直线DE上有一点O,过点O在直线DE上方作射线OC,∠COE比它的补角大100°,将一直角三角板AOB的直角点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕点O按每秒10°的速度逆时针旋转一周.设旋转时间为t秒.(1)求∠COE的度数;(2)若射线OC的位置保持不变,在旋转过程中,是否存在某个时刻,使得∠BOC=∠BOE?若存在,请求出t的取值,若不存在,请说明理由;(3)若在三角板开始转动的同时,射线OC也绕O点以每秒10°的速度顺时针旋转一周.从旋转开始多长时间.射线OC平分∠BOE.直接写出t的值.(本题中的角均为大0°且小180°的角)4、如图,已知点O是直线AB上一点,射线OM平分.(1)若,则______度;(2)若,求的度数.5、如图,已知,平分,平分,求证.证明:∵平分(已知),∴ ( ),同理 ,∴ ,又∵(已知)∴ ( ),∴. ---------参考答案-----------一、单选题1、D【分析】设首次重合需要的时间为t秒,则OE比OF要多旋转120゜+75゜,由此可得方程,解方程即可.【详解】∵∠BOD=∠AOC=30゜,OE⊥AB∴∠EOD=∠EOB+∠BOD=90゜+30゜=120゜,∠AOD=180゜ - ∠AOC=150゜∵OF平分∠AOD∴∴∠EOD+∠DOF=120゜+75゜设OE、OF首次重合需要的时间为t秒,则由题意得:18t−3t=120+75解得:t=13即射线OE,OF重合时,至少需要的时间是13秒故选:D【点睛】本题考查了角平分线的性质,补角的含义,垂直的定义,角的和差运算,运用了方程思想来解决,本题的实质是行程问题中的追及问题.2、D【分析】根据角平分线的定义得到∠COE=∠BOE,根据邻补角的定义列出方程,解方程求出∠BOD,根据对顶角相等求出∠AOC,结合图形计算,得到答案.【详解】解:设∠BOD=x,∵∠BOD:∠BOE=1:2,∴∠BOE=2x,∵OE平分∠BOC,∴∠COE=∠BOE=2x,∴x+2x+2x=180°,解得,x=36°,即∠BOD=36°,∠COE=72°,∴∠AOC=∠BOD=36°,∴∠AOE=∠COE+∠AOC=108°,故选:D.【点睛】本题考查的是对顶角、邻补角的概念,掌握对顶角相等、邻补角之和为180°是解题的关键.3、D【分析】根据邻补角及角度的运算可直接进行求解.【详解】解:由图可知:∠AOC+∠BOC=180°,∵∠COB=36°12',∴∠AOC=180°-∠BOC=143°48',故选D.【点睛】本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.4、D【分析】根据平行线的判定与性质、对顶角相等逐项判断即可.【详解】解:∵∠1=∠2,∴AB∥CD,故A正确,不符合题意;∴∠4=∠5,故C正确,不符合题意;∵∠EFB与∠3是对顶角,∴∠EFB=∠3,故B正确,无法判断∠3=∠5,故D错误,符合题意,故选:D.【点睛】本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.5、C【分析】根据平行线的性质与判定可以判断①②④,根据垂线段最短可以判断③.【详解】解:①平面内,垂直于同一条直线的两直线平行,是真命题;②经过直线外一点,有且只有一条直线与这条直线平行,是真命题;③垂线段最短,是真命题;④两直线平行,同旁内角互补,是假命题,∴真命题有3个,故选C.【点睛】本题主要考查了判断命题真假,熟知相关知识是解题的关键.6、C【分析】先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.【详解】解:∵OA平分∠EOC,∠EOC=100°,∴∠AOC=∠EOC=50°,∴∠BOC=180°﹣∠AOC=130°.故选:C.【点睛】本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.7、B【分析】根据余角的定义找出互余的角即可得解.【详解】解:∵OE平分∠AOB,∴∠AOE=∠BOE=90°,∴互余的角有∠AOC和∠COE,∠AOC和∠BOD,∠COE和∠DOE,∠DOE和∠BOD共4对,故选:B.【点睛】本题考查了余角的定义,从图中确定余角时要注意按照一定的顺序,防止遗漏.8、B【分析】根据对顶角的定义作出判断即可.【详解】解:根据对顶角的定义可知:只有B选项的是对顶角,其它都不是.故选:B.【点睛】本题考查对顶角的定义,解题关键是明确两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.9、C【分析】根据补角的定义可知,用180°﹣73°30'即可,【详解】解:∠α的补角的度数是180°﹣73°30'=106°30′.故选:C.【点睛】本题考查角的度量及补角的定义,解题关键是掌握补角的定义.10、D【分析】由,证明,再利用角的和差求解 从而可得答案.【详解】解:如图,标注字母, ,
∴, 此时的航行方向为北偏东30°, 故选:D.【点睛】本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.二、填空题1、 【分析】根据角度的四则运算法则、余角的定义即可得.【详解】解:,,,,,;的余角是,故答案为:,.【点睛】本题考查了角度的四则运算、余角,熟练掌握角度的四则运算法则和余角的定义是解题关键.2、##【分析】如图,标注字母,过作 再证明证明从而可得答案.【详解】解:如图,标注字母,过作
∠1=52°, 故答案为:【点睛】本题考查的是平行公理的应用,平行线的性质,掌握“两直线平行,内错角相等”是解本题的关键.3、①②④【分析】根据平行线的性质,直角三角板的性质对各小题进行验证即可得解.【详解】解:∵纸条的两边互相平行,∴∠1=∠2,∠3=∠4,∠4+∠5=180°,故①,②,④正确;∵三角板是直角三角板,∴∠2+∠4=180°-90°=90°,∵∠3=∠4,∴∠2+∠3=90°,故③不正确.综上所述,正确的是①②④.故答案为:①②④.【点睛】本题考查了平行线的性质,直角三角板的性质,熟记性质与概念并准确识图是解题的关键.4、【分析】先根据邻补角互补求出∠AOC=150°22′,再由角平分线的定义求解即可.【详解】解:∵∠BOC=29°38′,∠AOC+∠BOC=180°,∴∠AOC=150°22′,∵OD平分∠AOC,∴,故答案为:.【点睛】本题主要考查了邻补角互补,角度制的计算,角平分线的定义,熟知相关知识是解题的关键.5、130°【分析】根据平行线的性质可得∠EHD=∠EGB=50°,再利用邻补角的性质可求解.【详解】解:∵AB∥CD,∠EGB=50°,∴∠EHD=∠EGB=50°,∴∠CHG=180°﹣∠EHD=130°.故答案为:130°.【点睛】本题主要考查平行线的性质,邻补角,属于基础题.三、解答题1、(1)55°;(2)当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD;【解析】【分析】(1)过点P作PG∥l1,可得∠APG=∠PAC=15°,由l1∥l2,可得PG∥l2,则∠BPG=∠PBD=40°,即可得到∠APB=∠APG+∠BPG=55°;(2)分当P在线段CD上时;当P在DC延长线上时;当P在CD延长线上时,三种情况讨论求解即可.【详解】解:(1)如图所示,过点P作PG∥l1,∴∠APG=∠PAC=15°,∵l1∥l2,∴PG∥l2,∴∠BPG=∠PBD=40°,∴∠APB=∠APG+∠BPG=55°;(2)由(1)可得当P在线段CD上时,∠APB=∠PAC +∠PBD;如图1所示,当P在DC延长线上时,过点P作PG∥l1,∴∠APG=∠PAC,∵l1∥l2,∴PG∥l2,∴∠BPG=∠PBD=40°,∴∠APB=∠BPG-∠APG=∠PBD-∠PAC;如图2所示,当P在CD延长线上时,过点P作PG∥l1,∴∠APG=∠PAC,∵l1∥l2,∴PG∥l2,∴∠BPG=∠PBD=40°,∴∠APB=∠APG-∠BPG=∠PAC-∠PBD;∴综上所述,当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD.【点睛】本题主要考查了平行线的性质,平行公理的应用,解题的关键在于能够熟练掌握平行线的性质.2、∠BOC的补角有两个∠BOD和∠AOC;∠BOC的邻补角为∠AOC;∠BOC没有对顶角.【解析】【分析】由题意直接根据补角,邻补角及对顶角的定义进行分析即可找出.【详解】解:因为∠BOC+∠AOC=180º(平角定义),所以∠AOC是∠BOC的补角,∠AOD=∠BOC(已知),所以∠BOC+∠BOD=180º.所以∠BOD是∠BOC的补角.所以∠BOC的补角有两个:∠BOD和∠AOC.因为∠AOC和∠BOC相邻,所以∠BOC的邻补角为:∠AOC.∠BOC没有对顶角.【点睛】本题考查补角,邻补角及对顶角的定义,熟练掌握补角,邻补角及对顶角的定义是解题的关键.3、(1)140゜(2)存在,t=2秒或20秒;(3)秒【解析】【分析】(1)设∠COE=x度,则其补角为(180−x)度,根据∠COE比它的补角大100°列方程即可求得结果;(2)存在两种情况:当OC在直线DE上方时;当OC在直线DE下方时;就这两种情况考虑即可;(3)画出图形,结合图形表示出∠COE与∠COB,根据角平分线的性质建立方程即可求得t值.【详解】(1)设∠COE=x度,则其补角为(180−x)度,由题意得:x−(180−x)=100解得:x=140即∠COE=140゜(2)存在当OC在直线DE上方时,此时OB平分∠BOC∵∠COE=140゜∴当OB没有旋转时,∠BOC=50゜所以OB旋转了70゜−50゜=20゜则旋转的时间为:t=20÷10=2(秒)当OC在直线DE下方时,如图由图知:∠BOE+∠BOC+∠COE=360゜即:2∠BOE+∠COE=360゜∵OB旋转了10t度∴∠BOE=(10t−90)度∴2(10t−90)+140=360解得:t=20综上所述,当t=2秒或20秒时,∠BOC=∠BOE(3)OB、OC同时旋转10t度如图所示,∠COE=(180゜+40゜)−(10t)゜=(220−10t)゜∵2×(10t)゜−∠COB+50゜=360゜∴∠COB=2× (10t)゜−310゜∵∠COB=∠COE∴2× 10t−310=220-10t解得:即当t的值为秒时,满足条件.【点睛】本题考查了角平分线的性质,角的和差运算,补角的概念,解一元一次方程等知识,注意数形结合及分类讨论.4、(1),(2)【解析】【分析】(1)根据平角的定义可求;(2)根据和,代入解方程求出即可.【详解】解:(1)∵,∴,故答案为:.(2)∵OM平分,∴,∵,∴,∴,∴.【点睛】本题考查了角平分线的有关计算,解题关键是准确识图,弄清角之间的数量关系.5、∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补【解析】【分析】由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.【详解】证明:∵BE平分∠ABC(已知),∴∠2=∠ABC(角平分线的定义),同理∠1=∠BCD,∴∠1+∠2=(∠ABC+∠BCD),又∵AB∥CD(已知)∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补 ),∴∠1+∠2=90°.故答案为:∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.【点睛】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.
相关试卷
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习题,共17页。试卷主要包含了下列命题是真命题的是,如图,直线AB∥CD,直线AB,如图,能判定AB∥CD的条件是,下列说法中,真命题的个数为,一个角的补角比这个角的余角大.等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试复习练习题,共26页。试卷主要包含了下列命题,直线,若的余角为,则的补角为,若∠α=55°,则∠α的余角是,如图等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步训练题,共20页。试卷主要包含了如图,下列条件中能判断直线的是等内容,欢迎下载使用。