初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后测评
展开这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后测评,共23页。试卷主要包含了若的补角是150°,则的余角是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若∠α=55°,则∠α的余角是( )
A.35° B.45° C.135° D.145°
2、若∠A与∠B互为补角,且∠A=28°,则∠B的度数是( )
A.152° B.28° C.52° D.90°
3、如图,已知和都是直角,图中互补的角有( )对.
A.1 B.2 C.3 D.0
4、若一个角比它的余角大30°,则这个角等于( )
A.30° B.60° C.105° D.120°
5、下列命题中,①在同一平面内,若,,则;②相等的角是对顶角;③能被整除的数也能被整除;④两点之间线段最短.真命题有( )
A.个 B.个 C.个 D.个
6、嘉淇在证明“平行于同一条直线的两条直线平行”时,给出了如下推理过程:
已知:如图,b∥a,c∥a, 求证:b∥c; 证明:作直线DF交直线a、b、c分 别于点D、E、F, ∵a∥b,∴∠1=∠4,又∵a∥c, ∴∠1=∠5, ∴b∥c. |
小明为保证嘉淇的推理更严谨,想在方框中“∴∠1=∠5”和“∴b∥c”之间作补充,下列说法正确的是( )
A.嘉淇的推理严谨,不需要补充
B.应补充∠2=∠5
C.应补充∠3+∠5=180°
D.应补充∠4=∠5
7、一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠A=60°,则∠DBC的度数为( )
A.45° B.25° C.15° D.20°
8、下列有关“线段与角”的知识中,不正确的是( )
A.两点之间线段最短 B.一个锐角的余角比这个角的补角小
C.互余的两个角都是锐角 D.若线段,则是线段的中点
9、若的补角是150°,则的余角是( )
A.30° B.60° C.120° D.150°
10、下列语句中,错误的个数是( )
①直线AB和直线BA是两条直线;
②如果,那么点C是线段AB的中点;
③两点之间,线段最短;
④一个角的余角比这个角的补角小.
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,将一块直角三角板与一张两边平行的纸条按照如图所示的方式放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2=∠3;④∠4+∠5=180°.其中正确的是________.(填序号)
2、如图,E在AD的延长线上,下列四个条件:①∠3=∠4;②∠C+∠ABC=180°;③∠A=∠CDE;④∠1=∠2,其中能判定AB∥CD的是________.(填序号)
3、75°的余角是______.
4、如图,将两块三角板的直角顶点重合后叠放在一起,若∠1=40°,则∠2=_____°.
5、如图,将一条等宽的纸条按图中方式折叠,若∠1=40°,则∠2的度数为 ___.
三、解答题(5小题,每小题10分,共计50分)
1、已知:锐角∠AOB.
(1)若∠AOB=65°,则∠AOB的余角的度数为________度.
(2)若∠AOB=53°17ʹ,则∠AOB的补角的度数为________.
(3)若∠AOB=31°12ʹ,计算:∠AOB=___________.
(4)若∠AOB=20°21ʹ,计算:3∠AOB.
2、如图①,直线AB与直线CD相交于点O,, 过点O作射线.
(1)若射线OF平分, 求的度数;
(2)若将图①中的直线绕点O逆时针旋转至图②, ,当射线平分时,射线C是否平分,请说明理由;
(3)若, , 将图①中的直线绕点O按每秒5° 的速度逆时针旋转 度(),设旋转的时间为t秒,当时,求t的值.
3、如图,直线AB,CD相交于点O,OM⊥AB于点O,ON⊥CD于点O.
(1)试说明∠1=∠2;
(2)若∠BOC=4∠2,求∠AOC的大小.
4、已知AB∥CD,点是AB,CD之间的一点.
(1)如图1,试探索∠AEC,∠BAE,∠DCE之间的数量关系;
以下是小明同学的探索过程,请你结合图形仔细阅读,并完成填空(理由或数学式):
解:过点E作PE∥AB(过直线外一点有且只有一条直线与这条直线平行).
∵AB∥CD(已知),
∴PE∥CD( ),
∴∠BAE=∠1,∠DCE=∠2( ),
∴∠BAE+∠DCE= + (等式的性质).
即∠AEC,∠BAE,∠DCE之间的数量关系是 .
(2)如图2,点F是AB,CD之间的一点,AF平分∠BAE,CF平分∠DCE.
①若∠AEC=74°,求∠AFC的大小;
②若CG⊥AF,垂足为点G,CE平分∠DCG,∠AEC+∠AFC=126°,求∠BAE的大小.
5、根据解答过程填空(写出推理理由或数学式):
如图,已知∠DAF=∠F,∠B=∠D,试说明AB∥DC.
证明:∵∠DAF=∠F(已知).
∴AD∥BF( ),
∴∠D=∠DCF( ).
∵∠B=∠D(已知),
∴( )=∠DCF(等量代换),
∴AB∥DC( ).
---------参考答案-----------
一、单选题
1、A
【分析】
根据余角的定义即可得.
【详解】
由余角定义得∠α的余角为90°减去55°即可.
解:由余角定义得∠α的余角等于90°﹣55°=35°.
故选:A.
【点睛】
本题考查了余角的定义,熟记定义是解题关键.
2、A
【分析】
根据两个角互为补角,它们的和为180°,即可解答.
【详解】
解:∵∠A与∠B互为补角,
∴∠A+∠B=180°,
∵∠A=28°,
∴∠B=152°.
故选:A
【点睛】
本题考查了补角,解决本题的关键是熟记补角的定义.
3、B
【分析】
如图,延长BO至点E,根据平角的定义,由∠BOD=90°,得∠DOE=180°−∠DOB=90°,那么∠DOE=∠DOB=∠AOC=90°,故∠AOC+∠BOD=180°.由∠DOE=∠DOB=∠AOC=90°,得∠AOE+∠AOD=∠AOD+∠COD=∠DOC+∠BOC,那么∠AOE=∠COD,∠AOD=∠BOC.由∠AOE+∠AOB=180°,得∠COD+∠AOB=180°.
【详解】
解:如图,延长BO至点E.
∵∠BOD=90°,
∴∠DOE=180°−∠DOB=90°.
∴∠DOE=∠DOB=∠AOC=90°.
∴∠AOC+∠BOD=180°,∠AOE+∠AOD=∠AOD+∠COD=∠DOC+∠BOC.
∴∠AOE=∠COD,∠AOD=∠BOC.
∵∠AOE+∠AOB=180°,
∴∠COD+∠AOB=180°.
综上:∠AOC与∠BOD互补,∠AOB与∠COD互补,共2对.
故选:B.
【点睛】
本题主要考查补角,熟练掌握补角的定义是解决本题的关键.
4、B
【分析】
设这个角为α,则它的余角为:90°-α,由“一个角比它的余角大30°”列方程解方程即可的解.
【详解】
解:设这个角为α,则它的余角为:90°-α,
由题意得,α-(90°-α)=30°,
解得:α=60°,
故选:B
【点睛】
本题考查了余角的定义和一元一次方程的应用,根据题意列出等量关系是解题的关键.
5、B
【分析】
根据对顶角的定义以及数的整除性和两点之间线段最短分析得出即可.
【详解】
解:①在同一平面内,若a⊥b,b⊥c,则a∥c,故为真命题;
②相等的角不一定是对顶角,故为假命题;
③能被2整除的数不一定能被4整除,故为假命题;
④两点之间线段最短,故为真命题;
故选B.
【点睛】
此题主要考查了命题与定理,熟练掌握相关的定理是解题关键.
6、D
【分析】
根据平行线的性质与判定、平行公理及推论解决此题.
【详解】
解:证明:作直线DF交直线a、b、c分别于点D、E、F,
∵a∥b,
∴∠1=∠4,
又∵a∥c,
∴∠1=∠5,
∴∠4=∠5.
∴b∥c.
∴应补充∠4=∠5.
故选:D.
【点睛】
本题主要考查平行线的性质与判定、平行公理及推论,熟练掌握平行线的性质与判定、平行公理及推论是解决本题的关键.
7、C
【分析】
直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.
【详解】
解:由题意可得:∠EDF=45°,∠ABC=30°,
∵AB∥CF,
∴∠ABD=∠EDF=45°,
∴∠DBC=45°-30°=15°.
故选:C.
【点睛】
此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键.
8、D
【分析】
根据线段的性质及余角补角的定义解答.
【详解】
解:两点之间线段最短,故A选项不符合题意;
一个锐角的余角比这个角的补角小,故B选项不符合题意;
互余的两个角都是锐角,故C选项不符合题意;
若线段,则不一定是线段的中点,故D选项符合题意;
故选:D.
【点睛】
此题考查线段的性质,余角与补角的定义,熟记定义及线段的性质是解题的关键.
9、B
【分析】
根据补角、余角的定义即可求解.
【详解】
∵的补角是150°
∴=180°-150°=30°
∴的余角是90°-30°=60°
故选B.
【点睛】
此题主要考查余角、补角的求解,解题的关键是熟知如果两个角的和为90度,这两个角就互为余角;补角是指如果两个角的和是一个平角,那么这两个角叫互为补角,其中一个角叫做另一个角的补角
10、B
【分析】
根据直线的定义、线段中点的定义、线段的性质、余角与补角的定义分别判断.
【详解】
解:①直线AB和直线BA是同一条直线,故该项符合题意;
②如果,那么点C不一定是线段AB的中点,故该项符合题意;
③两点之间,线段最短,故该项不符合题意;
④一个角的余角比这个角的补角小,故该项不符合题意,
故选:B.
【点睛】
此题考查了直线的定义、线段中点的定义、线段的性质、余角与补角的定义,属于基础定义题型.
二、填空题
1、①②④
【分析】
根据平行线的性质,直角三角板的性质对各小题进行验证即可得解.
【详解】
解:∵纸条的两边互相平行,
∴∠1=∠2,∠3=∠4,∠4+∠5=180°,故①,②,④正确;
∵三角板是直角三角板,
∴∠2+∠4=180°-90°=90°,
∵∠3=∠4,
∴∠2+∠3=90°,故③不正确.
综上所述,正确的是①②④.
故答案为:①②④.
【点睛】
本题考查了平行线的性质,直角三角板的性质,熟记性质与概念并准确识图是解题的关键.
2、②③④
【分析】
根据平行线的判定定理,逐一判断,即可得到答案.
【详解】
∵,
∴,
∴①不符合题意;
∵∠C+∠ABC=180°,
∴AB∥CD;
∴②符合题意;
∵∠A=∠CDE,
∴AB∥CD;
∴③符合题意;
∵∠1=∠2,
∴AB∥CD.
故答案为:②③④.
【点睛】
本题主要考查平行线的判定定理,掌握平行线的判定定理是解题的关键.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
3、15°
【分析】
根据和为的两个角互为余角计算即可.
【详解】
解:75°的余角是90°﹣75°=15°.
故答案为:15°.
【点睛】
此题主要考查余角的求解,解题的关键是熟知余角的定义与性质.
4、
【分析】
根据图形可得等角的余角相等,进而即可求得.
【详解】
解:如图,
∵将两块三角板的直角顶点重合后叠放在一起,
∴
故答案为:
【点睛】
本题考查了同角的余角相等,读懂图形是解题的关键.
5、70︒
【分析】
如图,由平行线的性质可求得∠1=∠3,由折叠的性质可求得∠4=∠5,再由平行线的性质可求得∠2.
【详解】
解:如图,
∵a∥b,
∴∠3=∠1=40°,∠2=∠5,
又由折叠的性质可知∠4=∠5,且∠3+∠4+∠5=180°,
∴∠5=(180°-∠3)=70°,
∴∠2=70°,
故答案为:70︒.
【点睛】
本题主要考查平行线的性质和判定,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.
三、解答题
1、(1)25°;(2)126°43ʹ;(3)15°36ʹ;(4)61°3ʹ.
【解析】
【分析】
(1)根据余角的性质,即可求解;
(2)根据补角的性质,即可求解;
(3)用 乘以∠AOB,即可求解;
(4)用3乘以∠AOB,即可求解.
【详解】
解:(1)∠AOB的余角的度数为
(2) ;
(3) ;
(4)3∠AOB=3×20°21ʹ=60°63ʹ=61°3ʹ.
【点睛】
本题主要考查了余角和补角,角的倍分关系,熟练掌握余角和补角的性质,角的倍分关系是解题的关键.
2、(1);(2)平分,理由见解析;(3)秒或秒
【解析】
【分析】
(1)由补角的定义得出∠AOF的度数,由角平分线的定义得出∠FOC的度数,根据余角定义得出的度数;
(2)由得出,由角平分线的定义得出,得即可得出结论;
(3)由余角和补角的定义求得、的度数,然后分当s时,当s时,当s时分别讨论得出结果.
【详解】
解:(1),
,
,
(2) 平分,理由如下:
,
.
OE平分,
即射线OC平分.
(3)∵且,
∴
又∵,
∴,
∴
①当s时
直线绕点O按每秒5°的速度逆时针旋转
解得
②当s时
直线绕点O按每秒5°的速度逆时针旋转
此时无解
③当s时
直线绕点O按每秒5°的速度逆时针旋转
解得35
综上所述,当时, 秒或秒.
【点睛】
本题考查了补角和余角的定义,角平分线的定义,一元一次方程的运用,结合题意学会分类讨论的思想避免漏算答案.
3、(1)见解析;(2)60°
【解析】
【分析】
(1)利用同角的余角相等解答即可得出结论;
(2)利用(1)的结论,等量代换可得∠BOC=4∠1,利用∠BOM=90°=3∠1,求得∠1的度数,则∠AOC=90°﹣∠1.
【详解】
解:(1)∵OM⊥AB,ON⊥CD,
∴∠AOM=∠CON=90°,
∴∠AOC+∠1=90°,∠AOC+∠2=90°,
∴∠1=∠2.
(2)∵OM⊥AB,
∴∠BOM=90°.
∵∠1=∠2,∠BOC=4∠2,
∴∠BOC=4∠1.
∴∠BOM=∠BOC﹣∠1=4∠1﹣∠1=3∠1,
即3∠1=90°,
∴∠1=30°.
∴∠AOC=∠AOM﹣∠1=90°﹣30°=60°.
【点睛】
本题考查了对顶角、垂线性质、余角等基本几何知识,属于基础题.熟练掌握基本几何公理、基本几何概念是关键.
4、(1)平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE;(2)①37°;②52°
【解析】
【分析】
(1)结合图形利用平行线的性质填空即可;
(2)①过F作FG∥AB,由(1)得:∠AEC=∠BAE+∠DCE,根据AB∥CD,FG∥AB,CD∥FG,得出∠AFC=∠AFG+∠GFC=∠BAF+∠DCF,根据AF平分∠BAE,CF平分∠DCE,可得∠BAF=∠BAE,∠DCF=∠DCE,根据角的和差∠AFC=∠BAF+∠DCF=∠AEC即可;
②由①得:∠AEC=2∠AFC,可求∠AFC=42°,∠AEC=82°,根据CG⊥AF,求出∠GCF=90-∠AFC=48°,根据角平分线计算得出∠GCF=3∠DCF,求出∠DCF=16°即可.
【详解】
解:(1)平行于同一条直线的两条直线平行,
两直线平行,内错角相等,
∠1,∠2,
∠AEC=∠BAE+∠DCE,
故答案为:平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE,
(2)①过F作FG∥AB,
由(1)得:∠AEC=∠BAE+∠DCE,
∵AB∥CD,FG∥AB,
∴CD∥FG,
∴∠BAF=∠AFG,∠DCF=∠GFC,
∴∠AFC=∠AFG+∠GFC=∠BAF+∠DCF,
∵AF平分∠BAE,CF平分∠DCE,
∴∠BAF=∠BAE,∠DCF=∠DCE,
∴∠AFC=∠BAF+∠DCF,
=∠BAE+∠DCE,
=(∠BAE+∠DCE),
=∠AEC,
=×74°,
=37°;
②由①得:∠AEC=2∠AFC,
∵∠AEC+∠AFC=126°,
∴2∠AFC+∠AFC=126°
∴3∠AFC=126°,
∴∠AFC=42°,∠AEC=84°,
∵CG⊥AF,
∴∠CGF=90°,
∴∠GCF=90-∠AFC=48°,
∵CE平分∠DCG,
∴∠GCE=∠ECD,
∵CF平分∠DCE,
∴∠DCE=2∠DCF=2∠ECF,
∴∠GCF=3∠DCF,
∴∠DCF=16°,
∴∠DCE=32°,
∴∠BAE=∠AEC﹣∠DCE=52°.
【点睛】
本题考查平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程,掌握平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程是解题关键.
5、内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.
【解析】
【分析】
根据平行线的性质与判定条件完成证明过程即可.
【详解】
证明:∵∠DAF=∠F(已知).
∴AD∥BF(内错角相等,两直线平行),
∴∠D=∠DCF(两直线平行,内错角相等).
∵∠B=∠D(已知),
∴∠B=∠DCF(等量代换),
∴AB∥DC(同位角相等,两直线平行).
故答案为:内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.
【点睛】
本题主要考查了平行线的性质与判定,熟知平行线的性质与判定条件是解题的关键.
相关试卷
这是一份初中数学第七章 观察、猜想与证明综合与测试同步训练题,共21页。试卷主要包含了如图,下列条件中能判断直线的是,一个角的补角比这个角的余角大.等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试随堂练习题,共25页。试卷主要包含了下列说法,如图,直线AB∥CD,直线AB,一个角的补角比这个角的余角大.等内容,欢迎下载使用。
这是一份七年级下册第七章 观察、猜想与证明综合与测试练习,共24页。试卷主要包含了下列说法等内容,欢迎下载使用。