北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后练习题
展开
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后练习题,共19页。
京改版七年级数学下册第七章观察、猜想与证明专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用反证法证明命题“在同一平面内,若 ,则 a∥c”时,首先应假设( )A.a∥b B.b∥c C.a 与 c 相交 D.a 与 b2、如图,不能推出a∥b的条件是( )A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°3、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为( )A.164°12' B.136°12' C.143°88' D.143°48'4、如图,平行线AB,CD被直线AE所截.若∠1=70°,则∠2的度数为( )A.80° B.90° C.100° D.110°5、如图,直线AB和CD相交于点O,若∠AOC=125°,则∠BOD等于( )
A.55° B.125° C.115° D.65°6、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为( )
A.西偏北50° B.北偏西50° C.东偏北30° D.北偏东30°7、如图,直线a∥b,Rt△ABC的直角顶点C在直线b上.若∠1=50°,则∠2的度数为( )A.30° B.40° C.50° D.60°8、可以用来说明命题“x2<y2,则x<y”是假命题的反例是( )A.x=4,y=3 B.x=﹣1,y=2 C.x=﹣2,y=1 D.x=2,y=﹣39、如图,直线l1l2,直线l3与l1、l2分别相交于点A,C,BC⊥l3交l1于点B,若∠2=30°,则∠1的度数为( )A.30° B.40° C.50° D.60°10、下列说法中,真命题的个数为( )①两条平行线被第三条直线所截,同位角相等;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行;③过一点有且只有一条直线与这条直线平行;④点到直线的距离是这一点到直线的垂线段;A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将两块三角板的直角顶点重合后叠放在一起,若∠1=40°,则∠2=_____°.2、下列命题:①等角的余角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等;⑤过直线外一点作这条直线的垂线段,则这条垂线段叫做这个点到这条直线的距离.叙述正确的序号是________.3、如图,∠1还可以用______ 表示,若∠1=62°,那么∠BCA=____ 度.4、如果∠α是直角的,则∠α的补角是______度.5、如图所示,直线a,b被c所截,∠1=30°,∠2:∠3=1:5,则直线a与b的位置关系是________.三、解答题(5小题,每小题10分,共计50分)1、如图,直线、相交于点,是平分线,,求度数.2、如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOC=76°;(1)求∠DOE的度数;(2)求∠BOF的度数.3、如图,直线AB、CD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7.(1)求∠DOE的度数;(2)若∠EOF是直角,求∠COF的度数.4、如图,O是直线AB上点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC.(1)若∠BOC=70°,求∠COD和∠EOC的度数;(2)写出∠COD与∠EOC具有的数量关系,并说明理由.5、如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.则∠BON=______°.(2)将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为多少? ---------参考答案-----------一、单选题1、C【分析】用反证法解题时,要假设结论不成立,即假设a与c不平行(或a与c相交).【详解】解:原命题“在同一平面内,若a⊥b,c⊥b,则a∥c”, 用反证法时应假设结论不成立,即假设a与c不平行(或a与c相交).故答案为:C.【点睛】此题考查了反证法证明的步骤:(1)假设原命题结论不成立;(2)根据假设进行推理,得出矛盾,说明假设不成立;(3)原命题正确.2、B【分析】根据平行线的判定方法,逐项判断即可.【详解】解:、和是一对内错角,当时,可判断,故不符合题意;、和是邻补角,当时,不能判定,故符合题意;、和是一对同位角,当时,可判断,故不合题意;、和是一对同旁内角,当时,可判断,故不合题意;故选B.【点睛】本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.3、D【分析】根据邻补角及角度的运算可直接进行求解.【详解】解:由图可知:∠AOC+∠BOC=180°,∵∠COB=36°12',∴∠AOC=180°-∠BOC=143°48',故选D.【点睛】本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.4、D【分析】直接利用对顶角以及平行线的性质分析得出答案.【详解】解:∵∠1=70°,∴∠1=∠3=70°,∵ABDC,∴∠2+∠3=180°,∴∠2=180°−70°=110°.故答案为:D.【点睛】此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.5、B【分析】根据对顶角相等即可求解.【详解】解:∵直线AB和CD相交于点O,∠AOC=125°,∴∠BOD等于125°.故选B.【点睛】本题主要考查了对顶角的性质,熟知对顶角相等的性质是解题的关键.6、D【分析】由,证明,再利用角的和差求解 从而可得答案.【详解】解:如图,标注字母, ,
∴, 此时的航行方向为北偏东30°, 故选:D.【点睛】本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.7、B【分析】由平角的定义可求得∠BCD的度数,再利用平行线的性质即可求得∠2的度数.【详解】解:如图所示:∵∠1=50°,∠ACB=90°,∴∠BCD=180°﹣∠1﹣∠BCD=40°,∵a∥b,∴∠2=∠BCD=40°.故选:B.【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.8、D【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.【详解】解:当x=2,y=﹣3时,x2<y2,但x>y,故选:D.【点睛】此题考查的是命题与定理,要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法.9、D【分析】根据平行线的性质和垂直的定义解答即可.【详解】解:∵BC⊥l3交l1于点B,∴∠ACB=90°,∵∠2=30°,∴∠CAB=180°−90°−30°=60°,∵l1l2,∴∠1=∠CAB=60°.故选:D.【点睛】此题考查平行线的性质,关键是根据平行线的性质解答.10、B【分析】根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可【详解】①两条平行线被第三条直线所截,同位角相等,故①是真命题;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故②是真命题;③在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故③不是真命题, ④点到直线的距离是这一点到直线的垂线段的长度,故④不是真命题,故真命题是①②,故选B【点睛】本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键.二、填空题1、【分析】根据图形可得等角的余角相等,进而即可求得.【详解】解:如图,∵将两块三角板的直角顶点重合后叠放在一起,∴故答案为:【点睛】本题考查了同角的余角相等,读懂图形是解题的关键.2、①【分析】根据相交线与平行线中的一些概念、性质判断,得出结论.【详解】①等角的余角相等,故正确;②中,需要前提条件:过直线外一点,故错误;③中,相等的角不一定是对顶角,故错误;④中,仅当两直线平行时,同位角才相等,故错误;⑤中应为垂线段的长度叫做这个点到这条直线的距离,故错误.故答案为:①.【点睛】本题考查概念、性质的判定,注意,常考错误类型为某一个性质缺少前提条件的情况,因此我们需要格外注意每一个性质的前提条件.解题的关键是熟练掌握以上概念、性质的判定.3、 【分析】根据角的表示和邻补角的性质计算即可;【详解】∠1还可以用表示;∵∠1=62°,,∴;故答案是:;.【点睛】本题主要考查了角的表示和邻补角的性质,准确计算是解题的关键.4、157.5【分析】先根据直角的求出∠α,然后根据补角的定义求解即可.【详解】解:由题意知:∠α=90°×=22.5°,则∠α的补角=180°-22.5°=157.5°故答案为:157.5【点睛】本题考查了角的和倍差的计算和补角的定义,熟练掌握计算方法是解题的关键.5、平行【分析】根据∠2:∠3=1:5,求出的度数,然后根据同位角相等两直线平行进行解答即可.【详解】解:∵∠2:∠3=1:5,∴∠2=30°,∴∠1=∠2,∴a∥b,故答案为:平行.【点睛】本题考查了角的和差倍分求角度以及平行的判定,根据题意求出∠2=30°是解本题的关键.三、解答题1、77°【解析】【分析】由题意根据平角的定义以及角平分线的性质可以求得∠AOE的度数.【详解】解:∵OE是∠AOD的平分线,∠AOC=26°,∴∠AOD=180°-∠AOC=154°,∴∠AOE=∠AOD=77°.【点睛】本题考查角平分线的定义,邻补角、对顶角,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想进行解答.2、(1)38°;(2)33°【解析】【分析】(1)根据对顶角相等得出∠BOD,再根据角平分线计算∠DOE;(2)求出∠DOE的补角∠COE,再用角平分线得出∠EOF,最后根据∠BOF=∠EOF-∠BOE求解.【详解】解:(1)∵∠AOC=76°,∴∠BOD=∠AOC=76°,∵OE平分∠BOD,∴∠DOE=∠BOE=∠BOD=38°;(2)∵∠DOE=38°,∴∠COE=180°-∠DOE=142°,∵OF平分∠COE,∴∠EOF=∠COE=71°,∴∠BOF=∠EOF-∠BOE=33°.【点睛】本题考查了角平分线的定义,以及对顶角的性质,理解角平分线的定义是关键.3、(1);(2)【解析】【分析】(1)由∠AOC:∠AOD=3:7,先求解 再利用对顶角相等求解 结合角平分线的定义可得答案;(2)先求解 再利用平角的定义可得答案.【详解】解:(1) ∠AOC:∠AOD=3:7, OE平分∠BOD, (2) 【点睛】本题考查的是角平分线的定义,对顶角的性质,平角的定义,垂直的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.4、(1)∠COD=35°;∠EOC=55°;(2)∠COD+∠EOC;理由见解析.【解析】【分析】(1)根据角平分线的定义直接可得∠COD,根据邻补角求得,进而根据角平分线的定义求得;(2)根据平角的定义以及角平分线的定义,可得∠COD+∠EOC=(∠BOC+∠AOC)=90°,即可求得∠COD与∠EOC的数量关系.【详解】解:(1)∵OD平分∠BOC,∠BOC=70°,∴∠COD=∠BOC=35°,∵∠BOC=70°,∴∠AOC=180°-∠BOC=110°,∵OE平分∠AOC,∴∠EOC=∠AOC=55°.(2)∠COD+∠EOC=90°,理由如下:∵OD平分∠BOC,OE平分∠AOC,∴∠COD=∠BOC,∠EOC=∠AOC,∴∠COD+∠EOC=(∠BOC+∠AOC)=90°,∴∠COD+∠EOC.【点睛】本题考查了角平分线的定义,求一个角的补角,平角的定义,理解角平分线的意义是解题的关键.5、(1)35;(2)5.5或23.5【解析】【分析】(1)先计算∠MOB的度数,再利用互余原理计算即可;(2)分ON的反向延长线平分∠AOC和ON所在射线平分∠AOC两种情形计算,先计算需要旋转的度数,除以旋转的速度即可得到旋转需要的时间.【详解】解:(1)如图2,∵OM平分∠BOC,∴∠MOC=∠MOB,又∵∠BOC=110°∴∠MOB=55°,∵∠MON=90°,∴∠BON=∠MON-∠MOB=35°,故答案为:35°;(2)∵∠BOC=110°∴∠AOC=70°,当射线NO的延长线恰好平分锐角∠AOC时,∵∠AOD=∠COD=35°,∴∠BON=35°,∠BOM=55°,即逆时针旋转的角度为55°,由题意得,10t=55,故t=5.5.当ON平分∠AOC时,逆时针旋转的角度为:360°-90°-35°=235°,由题意得,10t=235,∴t=23.5;故t=5.5秒或t=23.5秒.【点睛】本题考查了旋转的意义,角的平分线,互余的性质,分类的思想,熟练掌握性质,正确进行分类是解题的关键.
相关试卷
这是一份初中第七章 观察、猜想与证明综合与测试达标测试,共21页。试卷主要包含了如图,直线AB,下列说法中正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试精练,共20页。试卷主要包含了如图,C,若的补角是150°,则的余角是等内容,欢迎下载使用。
这是一份初中数学第七章 观察、猜想与证明综合与测试同步训练题,共21页。试卷主要包含了如图,下列条件中能判断直线的是,一个角的补角比这个角的余角大.等内容,欢迎下载使用。