北京课改版七年级下册第七章 观察、猜想与证明综合与测试综合训练题
展开京改版七年级数学下册第七章观察、猜想与证明专项测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列有关“线段与角”的知识中,不正确的是( )
A.两点之间线段最短 B.一个锐角的余角比这个角的补角小
C.互余的两个角都是锐角 D.若线段,则是线段的中点
2、如图,直线AB、CD相交于点O,EO⊥AB于点O,∠EOC=35°,则∠AOD的度数为( )
A.55° B.125° C.65° D.135°
3、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为( )
A.164°12' B.136°12' C.143°88' D.143°48'
4、如图,点在直线上,,若,则的大小为( )
A.30° B.40° C.50° D.60°
5、如图,直线,相交于点,,,平分,给出下列结论:①当时,;②为的平分线;③若时,;④.其中正确的结论有( )
A.4个 B.3个 C.2个 D.1个
6、如图,能判定AB∥CD的条件是( )
A.∠2=∠B B.∠3=∠A C.∠1=∠A D.∠A=∠2
7、如果一个角的补角是这个角的4倍,那么这个角为( )
A.36° B.30° C.144° D.150°
8、如图,C、D在线段BE上,下列说法:
①直线CD上以B、C、D、E为端点的线段共有6条;
②图中至少有2对互补的角;
③若∠BAE=90°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和360°;
④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有( )
A.1个 B.2个 C.3个 D.4个
9、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为140°,则第二次的拐角为( )
A.40° B.50° C.140° D.150°
10、下列图形中,∠1与∠2不是对顶角的有( )
A.1个 B.2个 C.3个 D.0个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,点为直线上一点,.
(1)__________________°,__________________°;
(2)的余角是__________________,的补角是___________________.
2、若∠α=23°30′,则∠α的补角的度数为 _____.
3、如图,小明同学在练习本上的相互平行的横格上先画了直线,度量出∠1=112°,接着他准备在点A处画直线.若要使∥,则∠2的度数为_____度.
4、如图,AB∥CD∥EF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为 _____.
5、如图,直线AB、CD相交于点O,OE⊥AB于点O,若∠COE=55°,则∠BOD为______.
三、解答题(5小题,每小题10分,共计50分)
1、补全下列推理过程:已知:如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,求证:AB∥CD.
证明:∵CE平分∠BCD(______)
∴∠1=_____(_______)
∵∠1=∠2=70°(已知)
∴∠1=∠2=∠4=70°(________)
∴AD∥BC(________)
∴∠D=180°-_______=180°-∠1-∠4=40°
∵∠3=40°(已知)
∴______=∠3
∴AB∥CD(_______)
2、如图,已知点O是直线AB上一点,射线OM平分.
(1)若,则______度;
(2)若,求的度数.
3、如图,己知AB∥DC,AC⊥BC,AC平分∠DAB,∠B=50°,求∠D的大小.
阅读下面的解答过程,并填括号里的空白(理由或数学式).
解:∵AB∥DC( ),
∴∠B+∠DCB=180°( ).
∵∠B=( )(已知),
∴∠DCB=180°﹣∠B=180°﹣50°=130°.
∵AC⊥BC(已知),
∴∠ACB=( )(垂直的定义).
∴∠2=( ).
∵AB∥DC(已知),
∴∠1=( )( ).
∵AC平分∠DAB(已知),
∴∠DAB=2∠1=( )(角平分线的定义).
∵AB∥DC(己知),
∴( )+∠DAB=180°(两条直线平行,同旁内角互补).
∴∠D=180°﹣∠DAB= .
4、如图,直线AB,CD,EF相交于点O,
(1)指出∠AOC,∠EOB的对顶角及∠AOC的邻补角.
(2)图中一共有几对对顶角?指出它们.
5、如图1所示,MN//PQ,∠ABC与MN,PQ分别交于A、C两点
(1)若∠MAB=∠QCB=20°,则B的度数为 度.
(2)在图1分别作∠NAB与∠PCB的平分线,且两条角平分线交于点F.
①依题意在图1中补全图形;
②若∠ABC=n°,求∠AFC的度数(用含有n的代数式表示);
(3)如图2所示,直线AE,CD相交于D点,且满足∠BAM=m∠MAE, ∠BCP=m∠DCP,试探究∠CDA与∠ABC的数量关系
---------参考答案-----------
一、单选题
1、D
【分析】
根据线段的性质及余角补角的定义解答.
【详解】
解:两点之间线段最短,故A选项不符合题意;
一个锐角的余角比这个角的补角小,故B选项不符合题意;
互余的两个角都是锐角,故C选项不符合题意;
若线段,则不一定是线段的中点,故D选项符合题意;
故选:D.
【点睛】
此题考查线段的性质,余角与补角的定义,熟记定义及线段的性质是解题的关键.
2、B
【分析】
先根据余角的定义求得,进而根据邻补角的定义求得即可.
【详解】
EO⊥AB,∠EOC=35°,
,
.
故选:B.
【点睛】
本题考查了垂直的定义,求一个角的余角、补角,掌握求一个角的余角与补角是解题的关键.
3、D
【分析】
根据邻补角及角度的运算可直接进行求解.
【详解】
解:由图可知:∠AOC+∠BOC=180°,
∵∠COB=36°12',
∴∠AOC=180°-∠BOC=143°48',
故选D.
【点睛】
本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.
4、D
【分析】
根据补角的定义求得∠BOC的度数,再根据余角的定义求得∠BOD的度数.
【详解】
解:∵,
∴∠BOC=180°-150°=30°,
∵,即∠COD=90°,
∴∠BOD=90°-30°=60°,
故选:D
【点睛】
本题考查了补角和余角的计算,熟练掌握补角和余角的定义是解题的关键.
5、B
【分析】
由邻补角,角平分线的定义,余角的性质进行依次判断即可.
【详解】
解:∵∠AOE=90°,∠DOF=90°,
∴∠BOE=90°=∠AOE=∠DOF,
∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,
∴∠EOF=∠BOD,∠AOF=∠DOE,
∴当∠AOF=50°时,∠DOE=50°;
故①正确;
∵OB平分∠DOG,
∴∠BOD=∠BOG,
∴∠BOD=∠BOG=∠EOF=∠AOC,
故④正确;
∵,
∴∠BOD=180°-150°=30°,
∴
故③正确;
若为的平分线,则∠DOE=∠DOG,
∴∠BOG+∠BOD=90°-∠EOE,
∴∠EOF=30°,而无法确定,
∴无法说明②的正确性;
故选:B.
【点睛】
本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.
6、D
【分析】
根据平行线的判定定理,找出正确选项即可.
【详解】
根据内错角相等,两直线平行,
∵∠A=∠2,
∴AB∥CD,
故选:D.
【点睛】
本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角,培养了学生“执果索因”的思维方式与能力.
7、A
【分析】
设这个角为 ,则它的补角为 ,根据“一个角的补角是这个角的4倍”,列出方程,即可求解.
【详解】
解:设这个角为 ,则它的补角为 ,根据题意得:
,
解得: .
故选:A
【点睛】
本题主要考查了补角的性质,一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.
8、B
【分析】
按照两个端点确定一条线段即可判断①;根据补角的定义即可判断②;根据角的和差计算机可判断③;分两种情况讨论:当点F在线段CD上时点F到点B、C、D、E的距离之和最小,当点F和E重合时,点F到点B、C、D、E的距离之和最大计算即可判断④.
【详解】
解:①以B、C、D、E为端点的线段BC、BD、BE、CE、CD、DE共6条,故此说法正确;
②图中互补的角就是分别以C、D为顶点的两对邻补角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故此说法正确;
③由∠BAE=90°,∠CAD=40°,根据图形可以求出∠BAC+∠DAE+∠DAC+∠BAE+∠BAD+∠CAE=3∠BAE+∠CAD=310°,故此说法错误;
④如图1,当F不在CD上时,FB+FC+FD+FE=BE+CD+2FC,如图2当F在CD上时,FB+FC+FD+FE=BE+CD,如图3当F与E重合时,FB+FC+FE+FD=BE+CD+2ED,同理当F与B重合时,FB+FC+FE+FD=BE+CD+2BC,
∵BC=2,CD=DE=3,
∴当F在的线段CD上最小,则点F到点B、C、D、E的距离之和最小为FB+FE+FD+FC=2+3+3+3=11,当F和E重合最大则点F到点B、C、D、E的距离之和FB+FE+FD+FC=17,故此说法错误.
故选B.
【点睛】
本题主要考查了线段的数量问题,补角的定义,角的和差,线段的和差,解题的关键在于能够熟练掌握相关知识进行求解.
9、C
【分析】
由于拐弯前、后的两条路平行,用平行线的性质求解即可.
【详解】
解:∵拐弯前、后的两条路平行,
∴(两直线平行,内错角相等).
故选:C.
【点睛】
本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.
10、C
【分析】
根据对顶角的定义:有公共顶点且两条边都互为反向延长线的两个角称为对顶角,逐一判断即可.
【详解】
解:①中∠1和∠2的两边不互为反向延长线,故①符合题意;
②中∠1和∠2是对顶角,故②不符合题意;
③中∠1和∠2的两边不互为反向延长线,故③符合题意;
④中∠1和∠2没有公共点,故④符合题意.
∴∠1 和∠2 不是对顶角的有3个,
故选C.
【点睛】
此题考查的是对顶角的识别,掌握对顶角的定义是解决此题的关键.
二、填空题
1、35 55 与
【分析】
(1)由,可得,,所以,,,所以,已知的度数,即可得出与的度数;
(2)由(1)可得的余角是与,要求的补角,即要求的补角,的补角是.
【详解】
解:(1),,
,,
,,,
,
,
,;
(2)由(1)可得的余角是与,
,
的补角是,
的补角是.
故答案为:(1)35,55;(2)与,.
【点睛】
本题主要考查余角、补角以及垂直的定义,熟记补角、余角以及垂直的定义是解题关键.
2、156°30′
【分析】
如果两个角的和是180°,则这两个角互为补角.由此定义进行求解即可.
【详解】
解:∵∠α=23°30′,
∴∠α的补角=180°﹣∠α=23°30′=156°30',
故答案为:156°30'.
【点睛】
本题考查补角的计算,熟练掌握两个角互补的定义,并能准确计算是解题的关键.
3、68
【分析】
根据平行线的性质,得出,根据平行线的判定,得出,即可得到,进而得到的度数.
【详解】
解:∵练习本的横隔线相互平行,
,
∵要使,
∴,
又,
,
即,
故答案为:68.
【点睛】
本题主要考查了平行线的性质与判定条件,解题时注意:两直线平行,同位角相等;同旁内角互补,两直线平行.
4、50°
【分析】
由AB∥CD∥EF,得到∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,则∠ECD=180°-∠CEF=75°,由此即可得到答案.
【详解】
解:∵AB∥CD∥EF,
∴∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,
∴∠ECD=180°-∠CEF=75°,
∴∠BCE=∠BCD-∠ECD=50°,
故答案为:50°.
【点睛】
本题主要考查了平行线的性质,熟知平行线的性质是解题的关键.
5、35°
【分析】
根据垂直的定理得出的度数,然后根据已知条件得出的度数,最后根据对顶角相等求出即可.
【详解】
解:∵OE⊥AB,
∴∠AOE=90°,
∵ ,
∴∠AOC=90°- ,
∴∠BOD=∠AOC= ,
故答案为:35°.
【点睛】
本题考查了垂线的定义,对顶角的定义,根据题意得出的度数是解本题的关键.
三、解答题
1、见解析
【解析】
【分析】
由已知CE平分∠BCD可得∠1= ∠4,利用等式的性质得出∠1=∠2=∠4=70°,根据直线判定定理得出AD∥BC,利用平角定义求出∠D=180°-∠BCD即可.
【详解】
证明:∵CE平分∠BCD( 已知 ),
∴∠1= ∠4 ( 角平分线定义 ),
∵∠1=∠2=70°已知,
∴∠1=∠2=∠4=70°(等量代换),
∴AD∥BC(内错角相等,两直线平行),
∴∠D=180°-∠BCD=180°-∠1-∠4=40°,
∵∠3=40°已知,
∴ ∠D =∠3,
∴AB∥CD(内错角相等,两直线平行).
故答案为:已知;∠4 ,角平分线定义 ;等量代换;内错角相等,两直线平行;∠BCD;∠D;内错角相等,两直线平行.
【点睛】
本题考查平行线判定,角平分线定义,平角,掌握平行线判定方法,角平分线定义,平角是解题关键.
2、(1),(2)
【解析】
【分析】
(1)根据平角的定义可求;
(2)根据和,代入解方程求出即可.
【详解】
解:(1)∵,
∴,
故答案为:.
(2)∵OM平分,
∴,
∵,
∴,
∴,
∴.
【点睛】
本题考查了角平分线的有关计算,解题关键是准确识图,弄清角之间的数量关系.
3、见解析.
【解析】
【分析】
先根据平行线的性质可得,从而可得,再根据垂直的定义可得,从而可得,然后根据平行线的性质可得,根据角平分线的定义可得,最后根据平行线的性质即可得.
【详解】
解:∵(已知),
∴(两直线平行,同旁内角互补).
∵(已知),
∴.
∵(已知),
∴(垂直的定义).
∴.
∵(已知),
∴(两直线平行,内错角相等).
∵平分(已知),
∴(角平分线的定义).
∵(己知),
∴(两条直线平行,同旁内角互补).
∴.
【点睛】
本题考查了平行线的性质、垂直的定义、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.
4、(1)∠AOC的对顶角是∠BOD,∠EOB的对顶角是∠AOF,.∠AOC的邻补角是∠AOD,∠BOC;(2)共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD
【解析】
【分析】
根据对顶角的定义:两个角有一个公共点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角叫做对顶角;邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种位置关系的两个角叫做邻补角,进行求解即可.
【详解】
解:(1)由题意得:∠AOC的对顶角是∠BOD,
∠EOB的对顶角是∠AOF.
∠AOC的邻补角是∠AOD,∠BOC.
(2)图中共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD.
【点睛】
本题主要考查了对顶角和邻补角的定义,熟知定义是解题的关键.
5、(1)40;(2)①见解析;②;(3)m∠CDA+∠ABC=180°
【解析】
【分析】
(1)作MN、PQ的平行线HG,根据两直线平行,内错角相等即可解答;
(2)①根据题意作图即可,②过F作 ,根据两直线平行,同旁内角互补和内错角相等即可解答;
(3)延长AE交PQ于点G,设∠MAE=x°,∠DCP=y°,知∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,∠BCQ=180°−my°,根据(1)中所得结论知∠ABC=mx°+180°−my°,即y°−x°= ,由MNPQ知∠MAE=∠DGP=x°,根据∠CDA=∠DCP−∠DGC可得答案.
【详解】
解:(1)作 ,
∵MN//PQ,
∴,
∴ ,
∴ ;
(2)①如图所示,
②过点F作 ,
∴ ,
∴ ,
∵ ,
∴ ,
∵
∴ ,
∴ ,
∵ ,
∴ ;
(3)延长AE交PQ于点G,
设∠MAE=x°,∠DCP=y°,则∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,
∴∠BCQ=180°−my°,
由(1)知,∠ABC=mx°+180°−my°,
∴y°−x°=,
∵MNPQ,
∴∠MAE=∠DGP=x°,
则∠CDA=∠DCP−∠DGC
=y°−x°
=,
即m∠CDA+∠ABC=180°.
【点睛】
本题主要考查平行线的性质,解题的关键是掌握平行线的性质和判定等知识点.
数学七年级下册第七章 观察、猜想与证明综合与测试一课一练: 这是一份数学七年级下册第七章 观察、猜想与证明综合与测试一课一练,共21页。试卷主要包含了下列命题中,为真命题的是,下列命题是假命题的有,下列说法等内容,欢迎下载使用。
初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试习题: 这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试习题,共23页。试卷主要包含了如图,下列命题中,真命题是等内容,欢迎下载使用。
初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练: 这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练,共23页。试卷主要包含了如图,能判定AB∥CD的条件是,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。