初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试复习练习题
展开这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试复习练习题,共20页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是( )
A.77° B.64° C.26° D.87°
2、如图,直线AB,CD相交于点O,AOC30,OE⊥AB,OF是AOD的角平分线.若射线OE,OF分C别以18/s,3/s的速度同时绕点O顺时针转动,当射线OE,OF重合时,至少需要的时间是( )
A.8s B.11s C.s D.13s
3、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )
A.40° B.36° C.44° D.100°
4、下列说法中正确的是( )
A.一个锐角的补角比这个角的余角大90° B.-a表示的数一定是负数
C.射线AB和射线BA是同一条射线 D.如果︱x︱=5,那么x一定是5
5、如图,下列条件能判断直线l1//l2的有( )
①;②;③;④;⑤
A.1个 B.2个 C.3个 D.4个
6、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的( )方向.
A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°
7、若∠α=73°30',则∠α的补角的度数是( )
A.16°30' B.17°30' C.106°30' D.107°30'
8、如图,∠1=35°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为 ( )
A.125° B.115° C.105° D.95°
9、如图,已知AO⊥OC,OB⊥OD,∠COD=38°,则∠AOB的度数是( )
A.30º B.145º C.150º D.142º
10、下列图形中,∠1与∠2不是对顶角的有( )
A.1个 B.2个 C.3个 D.0个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,点E是BA延长线上一点,下列条件中:①∠1=∠3;②∠5=∠D;③∠2=∠4;④∠B+∠BCD=180°,能判定ABCD的有___.(填序号)
2、如图,E在AD的延长线上,下列四个条件:①∠3=∠4;②∠C+∠ABC=180°;③∠A=∠CDE;④∠1=∠2,其中能判定AB∥CD的是________.(填序号)
3、已知∠1与∠2互余,∠3与∠2互余,则∠1_____∠3.(填“>”,“=”或“<”)
4、已知∠A=38°24',则∠A的补角的大小是____.
5、如图,∠1还可以用______ 表示,若∠1=62°,那么∠BCA=____ 度.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知,,,试说明直线AD与BC垂直(请在下面的解答过程的空格内填空或在括号内填写理由).
理由:C,(已知)
,( )
.( )
又,(已知)
=180°.(等量代换)
,( )
.( )
,(已知)
,
.
2、已知:如图,中,点、分别在、上,交于点, ,.
(1)求证:;
(2)若平分,,求的度数.
3、如图,O是直线AB上点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC.
(1)若∠BOC=70°,求∠COD和∠EOC的度数;
(2)写出∠COD与∠EOC具有的数量关系,并说明理由.
4、已知如图,AO⊥BC,DO⊥OE.
(1)不添加其它条件情况下,请尽可能多地写出图中有关角的等量关系(至少3个);
(2)如果∠COE=35°,求∠AOD的度数.
5、如图,直线AB,CD,EF相交于点O,OG⊥CD.
(1)已知∠AOC=38°12',求∠BOG的度数;
(2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.
---------参考答案-----------
一、单选题
1、A
【分析】
本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.
【详解】
解:由图可知: AD∥BC
∴∠AEG=∠BGD′=26°,
即:∠GED=154°,
由折叠可知: ∠α=∠FED,
∴∠α==77°
故选:A.
【点睛】
本题主要考察的是根据平行得性质进行角度的转化.
2、D
【分析】
设首次重合需要的时间为t秒,则OE比OF要多旋转120゜+75゜,由此可得方程,解方程即可.
【详解】
∵∠BOD=∠AOC=30゜,OE⊥AB
∴∠EOD=∠EOB+∠BOD=90゜+30゜=120゜,∠AOD=180゜ - ∠AOC=150゜
∵OF平分∠AOD
∴
∴∠EOD+∠DOF=120゜+75゜
设OE、OF首次重合需要的时间为t秒,则由题意得:18t−3t=120+75
解得:t=13
即射线OE,OF重合时,至少需要的时间是13秒
故选:D
【点睛】
本题考查了角平分线的性质,补角的含义,垂直的定义,角的和差运算,运用了方程思想来解决,本题的实质是行程问题中的追及问题.
3、A
【分析】
首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.
【详解】
∵∠1=40°,∠2=40°,
∴∠1=∠2,
∴PQMN,
∴∠4=180°﹣∠3=40°,
故选:A.
【点睛】
本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
4、A
【分析】
根据补角和余角的概念即可判断A选项;根据负数的概念即可判断B选项;根据射线的概念即可判断C选项;根据绝对值的意义即可判断D选项.
【详解】
解:A、设锐角的度数为x ,
∴这个锐角的补角为,这个锐角的余角为,
∴.
故选项正确,符合题意;
B、当时,,
∴-a表示的数不一定是负数,
故选项错误,不符合题意;
C、射线AB是以A为端点,沿AB方向延长的的射线,射线BA是以B为端点,沿BA方向延长的的射线,
∴射线AB和射线BA不是同一条射线,
故选项错误,不符合题意;
D、如果︱x︱=5,,
∴x不一定是5,
故选项错误,不符合题意,
故选:A.
【点睛】
此题考查了补角和余角的概念,负数的概念,射线的概念,绝对值的意义,解题的关键是熟练掌握以上概念和性质.
5、D
【分析】
根据平行线的判定定理进行依次判断即可.
【详解】
①∵∠1,∠3互为内错角,∠1=∠3,∴;
②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴;
③∠4,∠5互为同位角,∠4=∠5,∴;
④∠2,∠3没有位置关系,故不能证明 ,
⑤,,
∴∠1=∠3,
∴,
故选D.
【点睛】
此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.
6、D
【分析】
根据方向角的概念,和平行线的性质求解.
【详解】
解:如图:
∵AF∥DE,
∴∠ABE=∠FAB=43°,
∵AB⊥BC,
∴∠ABC=90°,
∴∠CBD=180°﹣90°﹣43°=47°,
∴C地在B地的北偏西47°的方向上.
故选:D.
【点睛】
本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.
7、C
【分析】
根据补角的定义可知,用180°﹣73°30'即可,
【详解】
解:∠α的补角的度数是180°﹣73°30'=106°30′.
故选:C.
【点睛】
本题考查角的度量及补角的定义,解题关键是掌握补角的定义.
8、A
【分析】
利用互余角的概念与邻补角的概念解答即可.
【详解】
解:∵∠1=35°,∠AOC=90°,
∴∠BOC=∠AOC−∠1=55°.
∵点B,O,D在同一条直线上,
∴∠2=180°−∠BOC=125°.
故选:A.
【点睛】
本题主要考查了角的和差运算,互余角的关系以及邻补角的关系.准确使用邻补角的关系是解题的关键.
9、D
【分析】
根据垂直的定义得到∠AOC=∠DOB=90°,由互余关系得到∠BOC=52°,然后计算∠AOC+∠BOC即可.
【详解】
解:∵AO⊥OC,OB⊥OD,
∴∠AOC=∠DOB=90°,
而∠COD=38°,
∴∠BOC=90°-∠COD=90°-38°=52°,
∴∠AOB=∠AOC+∠BOC=90°+52°=142°.
故选:D.
【点睛】
本题考查了余角的概念:若两个,角的和为90°,那么这两个角互余.
10、C
【分析】
根据对顶角的定义:有公共顶点且两条边都互为反向延长线的两个角称为对顶角,逐一判断即可.
【详解】
解:①中∠1和∠2的两边不互为反向延长线,故①符合题意;
②中∠1和∠2是对顶角,故②不符合题意;
③中∠1和∠2的两边不互为反向延长线,故③符合题意;
④中∠1和∠2没有公共点,故④符合题意.
∴∠1 和∠2 不是对顶角的有3个,
故选C.
【点睛】
此题考查的是对顶角的识别,掌握对顶角的定义是解决此题的关键.
二、填空题
1、②③④
【分析】
根据平行线的判定方法分别判定得出答案.
【详解】
解:①中,∵∠1=∠3,∴AD//BC(内错角相等,两直线平行),故此选项不符合题意;
②中,∵∠5=∠D,∴AB//CD(内错角角相等,两直线平行),故此选项符合题意;
③中,∵∠2=∠4,∴AB//CD(内错角角相等,两直线平行)),故此选项符合题意;
④中,∠B+∠BCD=180°,∴AB//CD (同旁内角互补,两直线平行),故此选项符合题意;
故答案为:②③④.
【点睛】
此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.
2、②③④
【分析】
根据平行线的判定定理,逐一判断,即可得到答案.
【详解】
∵,
∴,
∴①不符合题意;
∵∠C+∠ABC=180°,
∴AB∥CD;
∴②符合题意;
∵∠A=∠CDE,
∴AB∥CD;
∴③符合题意;
∵∠1=∠2,
∴AB∥CD.
故答案为:②③④.
【点睛】
本题主要考查平行线的判定定理,掌握平行线的判定定理是解题的关键.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
3、=
【分析】
根据等(同)角的余角相等解答即可.
【详解】
解:∵∠1与∠2互余,∠3与∠2互余,
∴∠1=∠3,
故答案为:=.
【点睛】
本题考查余角,熟知同(等)角的余角相等是解答的关键.
4、141°36′
【分析】
根据补角的定义即可求解.
【详解】
解:∠A的补角 =180°- 38°24'= 141°36′ .
故答案为:141°36′
【点睛】
本题考查了补角的定义,熟知补角的定义“如果两个角的和是180°,则这两个角互为补角”是解题关键.
5、
【分析】
根据角的表示和邻补角的性质计算即可;
【详解】
∠1还可以用表示;
∵∠1=62°,,
∴;
故答案是:;.
【点睛】
本题主要考查了角的表示和邻补角的性质,准确计算是解题的关键.
三、解答题
1、GD;AC;同位角相等,两直线平行;;两直线平行,内错角相等;;AD;EF;同旁内角互补,两直线平行;两直线平行,同位角相等;AD;BC
【解析】
【分析】
结合图形,根据平行线的判定和性质逐一进行填空即可.
【详解】
解:,已知
,同位角相等,两直线平行
两直线平行,内错角相等
又,(已知)
(等量代换)
,同旁内角互补,两直线平行)
(两直线平行,同位角相等)
,(已知)
,
,
.
【点睛】
本题主要考查了平行线的判定和性质,垂线的定义,解答此题的关键是注意平行线的性质和判定定理的综合运用.
2、(1)见解析;(2)72°
【解析】
【分析】
(1)等量代换得出∠3=∠DFE,平行线的判定得出EF//AB,可以推出∠ADE=∠B,即可判断结论;
(2)由平分线的定义得出∠ADE=∠EDC=∠B,由平角的定义列出关于∠5+∠ADE+∠EDC==180°,求出∠B的度数,即可得出∠ADC的度数,由EF//AB即可求出∠2的度数.
【详解】
解:(1)∵,∠2+∠DFE=180°,
∴∠3=∠DFE,
∴EF//AB,
∴∠ADE=∠1,
又∵,
∴∠ADE=∠B,
∴DE//BC,
(2)∵平分,
∴∠ADE=∠EDC,
∵DE//BC,
∴∠ADE=∠B,
∵
∴∠5+∠ADE+∠EDC==180°,
解得:,
∴∠ADC=2∠B=72°,
∵EF//AB,
∴∠2=∠ADC=180°-108°=72°,
【点睛】
本题考查了平行线的判定和性质、邻补角、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
3、(1)∠COD=35°;∠EOC=55°;(2)∠COD+∠EOC;理由见解析.
【解析】
【分析】
(1)根据角平分线的定义直接可得∠COD,根据邻补角求得,进而根据角平分线的定义求得;
(2)根据平角的定义以及角平分线的定义,可得∠COD+∠EOC=(∠BOC+∠AOC)=90°,即可求得∠COD与∠EOC的数量关系.
【详解】
解:(1)∵OD平分∠BOC,∠BOC=70°,
∴∠COD=∠BOC=35°,
∵∠BOC=70°,
∴∠AOC=180°-∠BOC=110°,
∵OE平分∠AOC,
∴∠EOC=∠AOC=55°.
(2)∠COD+∠EOC=90°,理由如下:
∵OD平分∠BOC,OE平分∠AOC,
∴∠COD=∠BOC,∠EOC=∠AOC,
∴∠COD+∠EOC=(∠BOC+∠AOC)=90°,
∴∠COD+∠EOC.
【点睛】
本题考查了角平分线的定义,求一个角的补角,平角的定义,理解角平分线的意义是解题的关键.
4、(1),;(2).
【解析】
【分析】
(1)先根据垂直可得,再根据角的和差即可得;
(2)根据(1)的结论即可得出答案.
【详解】
解:(1),
,
,
,
即图中有关角的等量关系有,;
(2)由(1)已得:,
,
.
【点睛】
本题考查了垂直、角的和差,熟练掌握两条直线互相垂直,则四个角为直角是解题关键.
5、(1)51°48′;(2)OG是∠EOB的平分线,理由见解析
【解析】
【分析】
(1)根据互为余角的意义和对顶角的性质,可得∠AOC=∠BOD=38°12′,进而求出∠BOG;
(2)求出∠EOG=∠BOG即可.
【详解】
解:(1)∵OG⊥CD.
∴∠GOC=∠GOD=90°,
∵∠AOC=∠BOD=38°12′,
∴∠BOG=90°﹣38°12′=51°48′,
(2)OG是∠EOB的平分线,
理由:
∵OC是∠AOE的平分线,
∴∠AOC=∠COE=∠DOF=∠BOD,
∵∠COE+∠EOG=∠BOG+∠BOD=90°,
∴∠EOG=∠BOG,
即:OG平分∠BOE.
【点睛】
本题主要考查角平分线的定义及余角,熟练掌握角平分线的定义及余角是解题的关键.
相关试卷
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试课时练习,共25页。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步练习题,共21页。试卷主要包含了若的补角是150°,则的余角是,一个角的补角比这个角的余角大.,下列命题中,是真命题的是等内容,欢迎下载使用。
这是一份初中数学第七章 观察、猜想与证明综合与测试同步达标检测题,共22页。试卷主要包含了如图,能判定AB∥CD的条件是,命题,如图,下列条件中能判断直线的是等内容,欢迎下载使用。