初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后作业题
展开这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后作业题,共18页。试卷主要包含了用代入消元法解关于,解方程组的最好方法是,下列方程中,①x+y=6;②x等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组章节训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知,则( )
A. B. C. D.
2、用加减消元法解二元一次方程组时,下列方法中无法消元的是( )
A. B. C. D.
3、下列各式中是二元一次方程的是( )
A. B. C. D.
4、用代入消元法解关于、的方程组时,代入正确的是( )
A. B.
C. D.
5、根据大马和小马的对话求大马和小马各驮了几包货物.
大马说:“把我驮的东西给你1包多好哇!这样咱俩驮的包数就一样多了.”
小马说:“我还想给你1包呢!”
大马说:“那可不行!如果你给我1包,我驮的包数就是你的2倍了.”
小明将这个实际问题转化为二元一次方程组问题.设未知数x,y,已经列出一个方程x﹣1=y+1,则另一个方程应是( )
A.x+1=2y B.x+1=2(y﹣1)
C.x﹣1=2(y﹣1) D.y=1﹣2x
6、解方程组的最好方法是( )
A.由①得再代入② B.由②得再代入①
C.由①得再代入② D.由②得再代入①
7、已知 是方程的一个解, 那么的值是( ).
A.1 B.3 C.-3 D.-1
8、为迎接2022年北京冬奧会,某班开展了以迎冬奥为主题的体育活动,计划拿出200元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件25元,乙种奖品每件10元,则购买方案有( )
A.2种 B.3种 C.4种 D.5种
9、下列方程中,①x+y=6;②x(x+y)=2;③3x-y=z+1;④m+=7是二元一次方程的有( )
A.1个 B.2个 C.3个 D.4个
10、关于x,y的方程,k比b大1,且当时,,则k,b的值分别是( ).
A., B.2,1 C.-2,1 D.-1,0
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知是关于,的二元一次方程,则______.
2、已知,则________.
3、已知x、y满足方程组,则的值为__________.
4、小明心里想好一个两位数,将十位数字乘2,然后加3,再将所得的新数乘5,最后加原两位数的个位数字,结果是94.算算看小明心里想的两位数是 _____.
5、已知关于x、y的方程组的解满足x+y=4,则m=__.
三、解答题(5小题,每小题10分,共计50分)
1、中药是我国的传统医药,其独特的疗效体现了我们祖先的智慧,并且在抗击新冠疫情中,中医药发挥了重要的作用.现某中药材种植基地欲将一批150吨的重要中药材运往某药品生产厂,现有甲、乙两种车型供运输选择,每辆车的运载能力(假设每辆车均满载)和运费如下表所示:
车型 | 甲 | 乙 |
运载量(吨/辆) | 10 | 12 |
运费(元/辆) | 700 | 720 |
若全部中药材用甲、乙两种车型一次性运完,需支付运费9900元,问甲、乙两种车型各需多少辆?
2、m取哪些整数时,方程组的解是正整数?求出正整数解
3、利用方程组解的定义找到二元一次方程组的解,用代入消元法解这个方程组,并比较一下这两种方法,说说你的体会.
4、请用指定的方法解下列方程组:
(1);(代入法)
(2).(加减法)
5、已知关于的方程组.
(1)①当a=0时,该方程组的解是__________;
②x与y的数量关系是___________(不含字母a);
(2)是否存在有理数a,使得?请写出你的思考过程.
---------参考答案-----------
一、单选题
1、B
【分析】
根据二元一次方程组的解法以及非负数的性质即可求出答案.
【详解】
解:由题意可知:
解得: ,
故选:B.
【点睛】
本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.
2、D
【分析】
利用加减消元法逐项判断即可.
【详解】
A. ,可以消去x,不符合题意;
B. ,可以消去y,不符合题意;
C. ,可以消去x,不符合题意;
D. ,无法消元,符合题意;
故选:D
【点睛】
本题考查了加减消元法,解题关键是明确加减消元的方法,把相同未知数的系数变成相同或互为相反数,然后准确进行判断.
3、B
【分析】
根据二元一次方程的定义,即含有两个未知数,并且未知数项的次数为1的整式方程是二元一次方程判断即可;
【详解】
中x的次数为2,故A不符合题意;
是二元一次方程,故B符合题意;
中不是整式,故C不符合题意;
中y的次数为2,故D不符合题意;
故选B.
【点睛】
本题主要考查了二元一次方程的定义,准确分析判断是解题的关键.
4、A
【分析】
利用代入消元法把①代入②,即可求解.
【详解】
解:,
把①代入②,得:.
故选:A
【点睛】
本题主要考查了解二元一次方程组,解题的关键是熟练掌握二元一次方程组数为解法——代入消元法和加减消元法.
5、B
【分析】
设大马驮x袋,小马驮y袋.本题中的等量关系是:2×(小马驮的﹣1袋)=大马驮的+1袋;大马驮的﹣1袋=小马驮的+1袋,据此可列方程组求解.
【详解】
解:设大马驮x袋,小马驮y袋.
根据题意,得.
故选:B.
【点睛】
此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.
6、C
【分析】
观察两方程中系数关系,即可得到最好的解法.
【详解】
解:解方程组的最好方法是由①得,再代入②.
故选:C.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
7、A
【分析】
把x=1,y=-1代入方程2x-ay=3中,解关于a的方程,即可求出a的值.
【详解】
解:把x=1,y=-1代入方程2x-ay=3中,得:
2×1-a×(-1)=3,
2+a=3,
a=1.
故选:A.
【点睛】
本题考查了二元一次方程的解,对方程解的理解,直接代入方程求值即可.
8、B
【分析】
设购买甲种奖品为x件,乙种奖品为y件,由题意可得,进而求解即可.
【详解】
解:设购买甲种奖品为x件,乙种奖品为y件,由题意可得:
,
∴,
∵,且x、y都为正整数,
∴当时,则;
当时,则;
当时,则;
当时,则(不合题意舍去);
∴购买方案有3种;
故选B.
【点睛】
本题主要考查二元一次方程的应用,正确理解题意、掌握二元一次方程整数解求解的方法是解题的关键.
9、A
【分析】
含有两个未知数,且含未知数的项的最高次数是1,这样的整式方程是二元一次方程,根据定义逐一分析即可.
【详解】
解:①x+y=6是二元一次方程;
②x(x+y)=2,即不是二元一次方程;
③3x-y=z+1是三元一次方程;
④m+=7不是二元一次方程;
故符合题意的有:①,
故选A
【点睛】
本题考查的是二元一次方程的定义,掌握定义,根据定义判断方程是否是二元一次方程是解本题的关键.
10、A
【分析】
将时,代入,得 ①,再由k比b大1得 ②,将两个方程联立解之即可
【详解】
将时,代入,
得 ①,
再由k比b大1得 ②,
①②联立,解得,.
故选:A.
【点睛】
此题考查解二元一次方程组的实际应用,正确掌握k、b之间的关系列得方程组是解题的关键.
二、填空题
1、4
【解析】
【分析】
根据二元一次方程的定义,可得方程组,解得m、n的值,代入代数式即可.
【详解】
解:由题意得,,
解得:,
∴4,
故填:4.
【点睛】
本题考查二元一次方程的定义,属于基础题型.
2、-10
【解析】
【分析】
根据题目已知条件可得:,,,把变形为代值即可得出答案.
【详解】
,
,即,
,
故答案为:-10.
【点睛】
本题考查三元一次方程组,解题关键是根据题意得到已知与待求式之间的关系.
3、1
【解析】
【分析】
利用整体思想直接用方程①-②即可得结果.
【详解】
解:,
①-②得,4x+4y=4,
x+y=1,
故答案为:1.
【点睛】
本题考查了二元一次方程组的解,解二元一次方程组,解决本题的关键是掌握整体思想.
4、79
【解析】
【分析】
设小明想的两位数的个位数字为a,十位数字为b,根据题意列出方程,然后根据1≤b≤9,0≤a≤9且a,b为整数,从而确定二元一次方程的解.
【详解】
解:设小明想的两位数的个位数字为a,十位数字为b,由题意可得:
5(2b+3)+a=94,
整理,可得:10b+a=79,
∵1≤b≤9,0≤a≤9且a,b为整数,
∴a=9,b=7,
∴小明心里想的两位数是79.
故答案为:79
【点睛】
本题主要考查了二元一次方程的应用,明确题意,准确得到等量关系是解题的关键.
5、##2.5
【解析】
【分析】
①﹣②得出x+y=m,根据x+y=4求出m=4,再求出方程的解即可.
【详解】
解:,
①﹣②得:2x+2y=2m+3,化简得x+y=m+
∵x+y=4,
∴m+=4,
解得:m=,
故答案为:.
【点睛】
此题考查了二元一次方程组含参数问题,解题的关键是根据题意让两个方程相加.
三、解答题
1、甲种车型需9辆,乙种车型需5辆.
【分析】
设甲种车型需辆,乙种车型需辆,然后根据药材一共有150吨,运费一共9900元,列出方程求解即可.
【详解】
解:设甲种车型需辆,乙种车型需辆,
根据题意得
解得,
∴甲种车型需9辆,乙种车型需5辆
答:甲种车型需9辆,乙种车型需5辆.
【点睛】
本题主要考查了二元一次方程组的应用,解题的关键在于能够准确理解题意,列出方程求解.
2、当m=-3时,;当m=-2时,;当m=0时,.
【分析】
由第二个方程得到x=2y,然后利用代入消元法求出y,再根据方程组的解是正整数求出m的值,进而求出方程的解即可.
【详解】
解:,
由②得,x=2y③,
③代入①得,4y+my=4,
∴y=,
∵方程组的解是正整数,
∴4+m=1或4+m=2或4+m=4,
解得m=-3或m=-2或m=0,
当m=-3时,;
当m=-2时,;
当m=0时,.
【点睛】
本题考查了二元一次方程组的解,用m表示出y,再根据题意确定一个方程的正整数解是解题的关键.
3、
,见解析
【分析】
通过列举探索出了两个方程的公共解,即可找到其公共解,再利用代入消元法求解进行比较.
【详解】
解可得到数组解:,,,,,,…
解可得到数组解:,,,…
故的解为;
用代入消元法求解:
由①得x=8-y③
把②代入②得:5(8-y)+3y=34
解得y=3
把y=3代入③得x=5
∴方程组的解为
体会:代入消元法求解更具有一般性,方便求解.
【点睛】
此题主要考查方程组解的定义、加减消元法,解题的关键是先根据题意列出符合各方程的解,再找到其公共解进行解答.
4、(1);(2).
【分析】
(1)把②代入①得出3(y+3)+2y=14,,求出y,把y=1代入②求出x即可;
(2)②×3-①×4得: x=3,,把x=3代入①求出y即可.
【详解】
解:(1)(代入法),
把②代入①得:3(y+3)+2y=14,
解得:y=1,
把y=1代入②得:x=1+3=4,
所以方程组的解是;
(2).(加减法)
②×3-①×4得: x=3,
把x=3代入①得:6+3y=12,
解得:y=2,
所以方程组的解.
【点睛】
本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.
5、(1)①;②;(2)不存在,思考过程见解析.
【分析】
(1)①将代入方程组,再利用加减消元法解方程组即可得;
②先根据方程组中的第二个方程可得,再将其代入第一个方程即可得;
(2)先根据绝对值和偶次方的非负性求出,再利用(1)②的结论进行检验即可得答案.
【详解】
解:(1)①当时,方程组为,
由④③得:,
解得,
将代入③得:,
解得,
则该方程组的解是,
故答案为:;
②,
由第二个方程得:,
将代入第一个方程得:,
整理得:,
故答案为:;
(2)不存在,思考过程如下:
当时,则,即,
此时,
所以不存在有理数,使得.
【点睛】
本题考查了利用加减消元法解二元一次方程组、绝对值和偶次方的非负性,熟练掌握消元法是解题关键.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后作业题,共21页。试卷主要包含了下列说法中正确的是,已知,则的余角的补角是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课时作业,共21页。试卷主要包含了二元一次方程组的解是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试课后作业题,共21页。试卷主要包含了设m为整数,若方程组的解x等内容,欢迎下载使用。