北京课改版第九章 数据的收集与表示综合与测试同步练习题
展开这是一份北京课改版第九章 数据的收集与表示综合与测试同步练习题,共20页。试卷主要包含了以下调查中,适宜全面调查的是,数据,,,,,的众数是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一组数据2,9,5,5,8,5,8的中位数是( )
A.2B.5C.8D.9
2、下列调查适合作抽样调查的是( )
A.了解义乌电视台“同年哥讲新闻”栏目的收视率
B.了解某甲型H1N1确诊病人同机乘客的健康状况
C.了解某班每个学生家庭电脑的数量
D.“神七”载人飞船发射前对重要零部件的检查
3、请根据“2021年全运会金牌前十排行榜”判断,金牌数这一组数据的中位数为( )
A.36B.27
C.35.5D.31.5
4、某次考试有3000名学生参加,为了了解3000名学生的数学成绩,从中抽取了1000名学生的数学成绩进行调查统计分析,在这个问题中,有下述4种说法:①1000名考生是总体的一个样本;②3000名考生是总体;③1000名考生数学平均成绩可估计总体数学平均成绩;④每个考生的数学成绩是个体.其中正确的说法有( )
A.0种B.1种C.2种D.3种
5、某校男子足球队的年龄分布如图条形图所示,则这些队员年龄的众数是( )
A.8B.13C.14D.15
6、以下调查中,适宜全面调查的是( )
A.调查某批次汽车的抗撞击能力B.调查某市居民日平均用水量
C.调查全国春节联欢晚会的收视率D.调查某班学生的身高情况
7、数据,,,,,的众数是( )
A.B.C.D.
8、要调查下列问题,适合采用普查的是( )
A.中央电视台《开学第一课》的收视率B.某城市居民6月份人均网上购物的次数
C.即将发射的气象卫星的零部件质量D.银川市中小学生的视力情况
9、如果你和其余6人进入了八年级速算比赛的总决赛,你想知道自己是否能进入前3名,只需要了解自己的成绩以及全部成绩的( )
A.平均数B.众数C.中位数D.方差
10、某班学生在颁奖大会上得知该班获得奖励的情况如下表:
已知该班共有27人获得奖励(每位同学均可获得不同级别、不同类别多项奖励),其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为( )
A.3项B.4项C.5项D.6项
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知一组数据2,5,x,6的平均数是5,则这组数据的中位数是__.
2、如图所示是小明一天24小时的作息时间分配的扇形统计图,那么他的阅读时间是________小时.
3、若一组数据85、x、80、90、95的平均数为85,则x的值为________.
4、数据1,2,4,5,2的众数是 _____.
5、在调查中,考察全体对象的调查叫做________,________是指从总体中抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况;要考察的全体对象称为________,其中的每一个考察对象称为________,被抽取的那些考察对象组成一个________,其数目称为________.
三、解答题(5小题,每小题10分,共计50分)
1、2020年初的新冠肺炎疫情对人们的生活造成了较人的影响,为响应教育部下发通知“停课不停学”的倡议,某校准备选用合适的软件对全校学生直播上课,经对直播软件功能进行筛选,学校选定了“钉钉”和“QQ直播”两款软件进行试用,并组织全校师生对这两款软件打分(均为整数,最高5分:最低1分),20名同学打分情况如下:
学生打分的平均数、众数、中位数如表:
抽取的10位教师对“钉钉”和“QQ直播”这两款软件打分的平均分分别为3.9分和4分.
请根据以上信息解答下列问题:
(1)将上面表格填写完整:
(2)你认为学生对这两款软件评价较高的是 ,(填“钉钉”或“QQ直播”)理由是: ;
(3)学校决定选择综合平均分高的软件进行教学,其中综合平均分中教师打分占60%,学生打分占40%,请你通过计算分析学校会采用哪款软件进行教学.
2、中国男子国家足球队冲击2010年南非世界杯失利后,某新闻机构就中国足球环境问题随机调查了400人,其结果如下:
(1)计算出每一种意见人数占总调查人数的百分比(填在以上空格中);
(2)请画出反映此调查结果的扇形统计图;
(3)从统计图中你能得出什么结论?说说你的理由.
3、根据下列统计图,写出相应分数的平均数、众数和中位数.
(1)
(2)
4、为了解地铁开通对节约“出行时间”影响情况,对地铁1号线上某趟列车上的部分乘客进行随机抽样调查.将调查结果分为、、、四类,其中表示“出行节约0﹣10分钟”,表示“出行节约10﹣30分钟”,表示“出行节约30分钟以上”,表示“其他情况”,并根据调查结果绘制了图①、图②这两个不完整的统计图表.
(1)求这次调查的总人数.
(2)补全条形统计图.
(3)在图②的扇形统计图中,求类所对应的扇形圆心角的度数.
5、小明参加卖报纸的社会实践活动,他调查了一个报亭某天A、B、C三种报纸的销售量,并把调查结果绘制成如图所示条形统计图.
(1)求该天A、C报纸的销售量各占这三种报纸销售量之和的百分比.
(2)请绘制该天A、B、C三种报纸销售量的扇形统计图.
(3)小明准备按上述比例购进这三种报纸共100份,他应购进这三种报纸各多少份.
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
先将数据按从小到大排列,取中间位置的数,即为中位数.
【详解】
解:将改组数据从小到大排列得:2,5,5,5,8,8,9,
中间位置的数为:5,所以中位数为5.
故选:B.
【点睛】
本题主要是考查了中位数的定义,熟练掌握地中位数的定义,是求解该类问题的关键.
2、A
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
解:A、了解义乌电视台“同年哥讲新闻”栏目的收视率,应采用抽样调查的方式,故本选项符合题意;
B、了解某甲型H1N1确诊病人同机乘客的健康状况,应采用全面调查,故本选项不符合题意;
C、了解某班每个学生家庭电脑的数量,应采用全面调查,故本选项不符合题意;
D、“神七”载人飞船发射前对重要零部件的检查,应采用全面调查,故本选项不符合题意;
故选:A.
【点睛】
本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、D
【解析】
【分析】
根据中位数定义解答.将这组数据从小到大的顺序排列,第5、6个数的平均数为中位数.
【详解】
解:将这组数据从小到大的顺序排列处于中间位置的数即第5名和第6名的金牌数是36、27,
那么由中位数的定义可知,这组数据的中位数是.
故选D.
【点睛】
本题为统计题,考查中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
4、C
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.本题总体是3000名学生的数学成绩,个体是这次考试中每名学生的数学成绩,样本是抽取的1000名学生的数学成绩,样本容量是1000.
【详解】
解:①、②两个说法指的是考生而不是考生的成绩,故①、②两个说法不对,④指的是考生的成绩,故④对.③用样本的特征估计总体的特征,是抽样调查的核心,故③对.
故选:C
【点睛】
本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.在本题中解题关键是注意总体、样本都是指考生的成绩,而不是考生.
5、C
【解析】
【分析】
根据众数的定义:一组数据中出现次数最多的那个数,称为这组数据的众数,据此结合条形图可得答案.
【详解】
解:由条形统计图知14岁出现的次数最多,
所以这些队员年龄的众数为14岁,
故选C.
【点睛】
本题考查了众数的定义及条形统计图的知识,解题的关键是能够读懂条形统计图及了解众数的定义.
6、D
【解析】
【分析】
根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查省时省力,但得到的调查结果比较近似即可解答.
【详解】
解:A. 调查某批次汽车的抗撞击能力,调查具有破坏性,适合抽样调查,故不合题意;
B. 调查某市居民日平均用水量,调查耗时耗力,适合抽样调查,故不合题意;
C. 调查全国春节联欢晚会的收视率调查耗时耗力,适合抽样调查,故不合题意;
D. 调查某班学生的身高情况,适合全面调查,故符合题意.
故选:D
【点睛】
本题考查了抽样调查和全面调查的区别,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.
7、D
【解析】
【分析】
根据众数是一组数据中出现次数最多的数据可求解.
【详解】
解:数据,,,,,的众数是3.
故选择:D.
【点睛】
本题考查众数,掌握众数定义是解题关键.
8、C
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析各选项即可得到答案.
【详解】
解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;
B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;
C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;
D、调查银川市中小学生的视力情况,适合抽查,故本选项不合题意.
故选:C.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
9、C
【解析】
【分析】
根据题意可得:由中位数的概念,可知7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前3名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
解:由于总共有7个人,第4位选手的成绩是中位数,要判断是否进入前3名,
故应知道自己的成绩和中位数.
故选:C.
【点睛】
本题考查的是中位数的含义,以及利用中位数作判断,理解中位数的含义是解本题的关键.
10、C
【解析】
【分析】
根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的人中的一人获奖最多,其余获奖最少,只获一项奖励,用总奖励减去各部分的奖励即可得获奖最多的人的项目个数.
【详解】
解:根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的人中的一人获奖最多,其余人获奖最少,只获一项奖励,则获奖最多的人获奖项目为:
项.
故选:C.
【点睛】
题目主要考查数据的整理、处理,理解题意,理清在什么情况下获奖最多是解题关键.
二、填空题
1、5.5
【解析】
【分析】
先计算x,后计算中位数.
【详解】
解:∵2,5,x,6的平均数是5,
∴(2+5+x+6)÷4=5,
解得:x=7,
把这组数据从小到大排列为:2,5,6,7,
则这组数据的中位数是5.5;
故答案为:5.5.
【点睛】
本题考查了平均数,中位数,熟练掌握平均数,中位数的计算方法是解题的关键.
2、1
【解析】
【分析】
先求“阅读”所占的圆心角,再用×24,即可得出结果.
【详解】
解:360-(60+30+120+135)=15,
×24=1(小时),
故答案为:1.
【点睛】
本题考查了扇形统计图的应用,能够求出“阅读”所占的圆心角是解决本题的关键.
3、75
【解析】
【分析】
只要运用求平均数公式即可求出.
【详解】
由题意知,(85+x+80+90+95)=85,
解得x=75.
故填75.
【点睛】
本题考查了平均数的概念.熟记公式是解决本题的关键.
4、2
【解析】
【分析】
找出出现次数最多的数是众数.
【详解】
解:数据1,2,4,5,2中,2出现的次数最多,是2次,因此众数是2.
故答案为:2.
【点睛】
本题考查众数的意义及求法,在一组数据中出现次数最多的数是众数.
5、 全面调查 抽样调查 总体 个体 样本 样本容量
【解析】
【分析】
依据全面调查,抽样调查,总体,个体,样本,样本容量的定义直接解答即可
【详解】
解:在调查中,考察全体对象的调查叫做全面调查,从总体中抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况的调查叫抽样调查,要考察的全体对象称为总体,其中的每一个考察对象称为个体,被抽取的那些考察对象组成一个样本,其数目称为样本容量;
故答案为:全面调查,抽样调查,总体,个体,样本,样本容量;
【点睛】
本题主要考查了全面调查,抽样调查及相关概念,熟练掌握有关概念是解答本题的关键.
三、解答题
1、(1)4,3;(2)钉钉,钉钉软件得分的平均数、众数和中位数均大于QQ直播;(3)学校会采用QQ直播软件进行教学,见解析
【解析】
【分析】
(1)将20名学生对钉钉直播软件的评分重新排列,再根据中位数的定义求解即可;根据众数的定义可得20名学生对钉钉直播软件的评分的众数;
(2)比较平均数、众数和中位数的大小即可得出答案;
(3)根据加权平均数的定义分别计算出钉钉软件和QQ直播软件的最终得分,比较大小即可得出答案.
【详解】
解:(1)将20名学生对钉钉直播软件的评分排列如下:
1,1,2,2,2,2,3,3,3,4,4,4,4,4,4,5,5,5,5,5,
其中位数为=4,
20名学生对钉钉直播软件的评分次数最多的是3分,有6次,
所以其众数为3,
补全表格如下:
故答案为:4、3;
(2)认为学生对这两款软件评价较高的是钉钉,理由是:钉钉软件得分的平均数、众数和中位数均大于QQ直播,
故答案为:钉钉,钉钉软件得分的平均数、众数和中位数均大于QQ直播.
(3)钉钉软件的最终得分为3.9×60%+3.4×40%=3.7(分),
QQ直播软件的最终得分为4×60%+3.35×40%=3.74(分),
∵3.74>3.7,
∴学校会采用QQ直播软件进行教学.
【点睛】
本题主要考查中位数、众数及平均数,熟练掌握求一组数据的众数、中位数及平均数是解题的关键.
2、(1)见解析;(2)见解析;(3)绝大部分人对中国足球环境问题不满意.
【解析】
【分析】
(1)由每个的人数除以总人数.再乘以100%,即可求得;
(2)由各自的百分数乘以360°,即可得到每个小扇形的圆心角的度数,然后作扇形图即可;
(3)扇形图能反映各种情况的百分比,根据扇形图即可得到答案.
【详解】
解:(1)∵×100%=50%,×100%=40%,×100%=8%,×100%=2%,
(2)∵50%×360°=180°,40%×360°=144°,8%×360°=28.8°,2%×360°=7.2°,
∴
(3)人民对国家足球队非常不满意的人数占到一半.绝大部分人对中国足球环境问题不满意.
【点睛】
此题考查了扇形统计图的作法与含义.解题的难点在扇形统计图的角度的求得上,要注意掌握方法.
3、(1)平均数为3分,众数为3分,中位数为3分;(2)平均数为3.42分,众数为3分,中位数为3分
【解析】
【分析】
(1)从条形统计图中得出相应的信息,然后根据算数平均数(总分数除以总人数)、众数(出现次数最多得数)、中位数(排序后中间两个数得平均数)的算法直接进行计算即可;
(2)从扇形统计图中读取相关的信息,然后根据加权平均数、中位数、众数的计算方法计算即可.
【详解】
解:
(1)平均分数为:,
从图中可得:有21人得3分,众数为3分,
共有40人,将分数从小到大排序后,第20和21位都是3分,
∴中位数为3分,
∴平均分数为3分,众数为3分,中位数为3分;
(2)平均分数为:,
扇形统计图中分占比,大于其他分数的占比,众数为3分;
中位数在的比例中,中位数为3分;
∴平均分数为3.42分,众数为3分,中位数为3分.
【点睛】
题目主要考查算数平均数、加权平均数、众数、中位数的计算方法,根据图象得出相应的信息进行计算是解题关键.
4、(1)50人;(2)见解析;(3)108°
【解析】
【分析】
(1)利用类的人数除以类所占百分比,即可求解;
(2)求出“出行节约30分钟以上”的人数,即可求解;
(3)用360°乘以类所占的百分比,即可求解.
【详解】
解:(1)调查的总人数是:(人).
(2)“出行节约30分钟以上”的人数有 (人),
补全图形,如图所示:
(3)A类所对应的扇形圆心角的度数是.
【点睛】
本题主要考查了条形统计图和扇形统计图,明确题意,准确获取信息是解题的关键.
5、(1)该天A、C报纸的销售量各占这三种报纸销售量之和的20%和30%;(2)见解析;(3)小明应购进A种报纸20份,B种报纸50份,C种报纸30份
【解析】
【分析】
(1)用A,C报纸的销售量分别除以三种报纸销售量之和,然后求解即可;
(2)由(1)的结果绘制扇形统计图;
(3)用100分别乘以三种报纸所占的百分比即可求得结果.
【详解】
解:(1),.
∴ 该天A、C报纸的销售量各占这三种报纸销售量之和的20%和30%.
(2)A、B、C三种报纸销售量的扇形统计图如图所示.
(3)100×20%=20(份),100×50%=50(份),100×30%=30(份).
∴ 小明应购进A种报纸20份,B种报纸50份,C种报纸30份.
【点睛】
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
排名
1
2
3
4
5
6
7
8
9
10
代表团
山东
广东
浙江
江苏
上海
湖北
福建
湖南
四川
辽宁
金牌数
项目人数
级别
三好学生
优秀学生干部
优秀团员
市级
1
1
1
区级
3
2
2
校级
17
5
12
钉钉
5
4
5
2
4
2
5
3
4
1
1
3
5
4
2
4
4
3
2
5
4
3
3
3
5
5
3
4
5
2
2
5
4
4
4
1
3
2
3
2
软件
平均数
众数
中位数
钉钉
3.4
4
QQ直播
3.35
3
意见
非常不满意
不满意
有一点满意
满意
人数
200
160
32
8
百分比
软件
平均数
众数
中位数
钉钉
3.4
4
4
QQ直播
3.35
3
3
相关试卷
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试同步测试题,共17页。试卷主要包含了已知一组数据等内容,欢迎下载使用。
这是一份初中北京课改版第九章 数据的收集与表示综合与测试课时练习,共18页。试卷主要包含了以下调查中,适宜全面调查的是,下列问题不适合用全面调查的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试同步测试题,共17页。试卷主要包含了下列调查中,最适合抽样调查的是,水果店内的5个苹果,其质量等内容,欢迎下载使用。