初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后测评
展开这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后测评,共20页。试卷主要包含了下列说法中,某教室9天的最高室温统计如下等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知一组数据85,80,x,90的平均数是85,那么x等于( )
A.80B.85C.90D.95
2、某校男子足球队的年龄分布如图条形图所示,则这些队员年龄的众数是( )
A.8B.13C.14D.15
3、下列调查中,调查方式选择不合理的是( )
A.为了了解新型炮弹的杀伤半径,选择抽样调查
B.为了了解某河流的水质情况,选择普查
C.为了了解神舟飞船的设备零件的质量情况,选择普查
D.为了了解一批袋装食品是否含有防腐剂,选择抽样调查
4、13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )
A.方差B.众数C.平均数D.中位数
5、为了解某校初一年级1200名学生每天花费在数学学习上的时间,抽取了100名学生进行调查,以下说法正确的是( )
A.1200名学生每天花费在数学学习上的时间是总体B.每名学生是个体
C.从中抽取的100名学生是样本D.样本容量是100名
6、下列说法中:①除以一个数等于乘以这个数的倒数;②用四个圆心角都是的扇形,一定可以拼成一个圆;③把5克盐放入100克水中,盐水的含盐率是5%;④如果小明的体重比小方体重少,那么小方体重比小明体重多25%;⑤扇形统计图可以直观地表示各部分数量与总数之间的关系.其中正确说法的个数是( )
A.1个B.2个C.3个D.4个
7、某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,88,则小彤这学期的体育成绩为( )
A.89B.90C.91D.92
8、某教室9天的最高室温统计如下:
这组数据的中位数和众数分别是( )
A.31.5,33B.32.5,33C.33,32D.32,33
9、下列调查中,其中适合采用抽样调查的是( )
A.调查某班50名同学的视力情况
B.为了解新型冠状病毒(SARS-CV-2)确诊病人同一架飞机乘客的健康情况
C.为保证“神舟9号”成功发射,对其零部件进行检查
D.检测中卫市的空气质量
10、为了解学生参加体育锻炼的情况、现将九年级(1)班同学一周的体育锻炼情况绘制成如图所示不完整的条形统计图,已知锻炼7小时的人数占全班总人数的20%,则下列结论正确的是( )
A.九年级(1)班共有学生40名B.锻炼时间为8小时的学生有10名
C.平均数是8.5小时D.众数是8小时
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个扇形统计图中,某部分占总体的百分比为13%,则该部分所对扇形圆心角为______.
2、下列调查中必须用抽样调查方式来收集数据的有________.
①检查一大批灯泡的使用寿命;
②调查某大城市居民家庭的收入情况;
③了解全班同学的身高情况;
④了解NBA各球队在2015-2016赛季的比赛结果.
3、某校欲招聘一名数学教师,学校对甲乙丙三位候选人进行三项能力测试,各项成绩满分均为100分,根据结果择优录用,三位候选人测试成绩如表:
根据实际需要学校将三项能力测试得分按6:2:2的比例确定每人的成绩,将被录用的是________
4、年末,我国完成了第次人口普查,国家统计局采取的调查方式是_______.(填“全面调查”“抽样调查”)
5、为了解某学校七年级学生每周平均课外阅读时间的情况,随机抽查了50名学生,对其每周平均课外阅读时间进行统计, 绘制了一个不完整的扇形统计图,根据图中提供的信息,阅读3小时对应扇形图的圆心角的大小为_________度.
三、解答题(5小题,每小题10分,共计50分)
1、嘉嘉和淇淇两名同学进行射箭训练,分别射箭五次,部分成绩如折线统计图所示,已知两人这五次射箭的平均成绩相同.
(1)规定射箭成绩不低于9环为“优秀”,求嘉嘉射箭成绩的优秀率.
(2)请补充完整折线统计图;
(3)设淇淇五次成绩的众数为a环,若嘉嘉补射一次后,成绩为b环,且嘉嘉六次射箭成绩的中位数恰好也是a环,求b的最大值.
2、乒乓球,被称为“国球”,在中华大地有着深厚的群众基础.2000年2月23日,国际乒联特别大会决定从2000年10月1日起,乒乓球比赛将使用直径40mm、重量2.7g的大球,以取代38mm的小球.某工厂按要求加工一批标准化的直径为40mm乒乓球,但是实际生产的乒乓球直径可能会有一些偏差.随机抽查检验该批加工的10个乒乓球直径并记录如下:﹣0.4,﹣0.2,﹣0.1,﹣0.1,﹣0.1,0,+0.1,+0.2,+0.3,+0.5(“+”表示超出标准;“﹣”表示不足标准).
(1)其中偏差最大的乒乓球直径是 mm;
(2)抽查的这10个乒乓球中,平均每个球的直径是多少mm?
(3)若误差在“±0.25mm”以内的球可以作为合格产品,误差在“±0.15mm”以内的球可以作为良好产品,这10个球的合格率是 ;良好率是 .
3、2020年初的新冠肺炎疫情对人们的生活造成了较人的影响,为响应教育部下发通知“停课不停学”的倡议,某校准备选用合适的软件对全校学生直播上课,经对直播软件功能进行筛选,学校选定了“钉钉”和“QQ直播”两款软件进行试用,并组织全校师生对这两款软件打分(均为整数,最高5分:最低1分),20名同学打分情况如下:
学生打分的平均数、众数、中位数如表:
抽取的10位教师对“钉钉”和“QQ直播”这两款软件打分的平均分分别为3.9分和4分.
请根据以上信息解答下列问题:
(1)将上面表格填写完整:
(2)你认为学生对这两款软件评价较高的是 ,(填“钉钉”或“QQ直播”)理由是: ;
(3)学校决定选择综合平均分高的软件进行教学,其中综合平均分中教师打分占60%,学生打分占40%,请你通过计算分析学校会采用哪款软件进行教学.
4、4,7,6,3,6,3的众数是什么?
5、某班10名男同学参加100米达标检测,15秒以下达标(包括15秒),这10名男同学成绩记录如下:+1.2,0,-0.8,+2,0,-1.4,-0.5,0,-0.3,+0.8 (其中超过15秒记为“+”,不足15秒记为“-”)
(1)求这10名男同学的达标率是多少?
(2)这10名男同学的平均成绩是多少?
(3)最快的比最慢的快了多少秒?
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
由平均数的公式建立关于x的方程,求解即可.
【详解】
解:由题意得:(85+x+80+90)÷4=85
解得:x=85.
故选:B.
【点睛】
本题考查了平均数,应用了平均数的计算公式建立方程求解.
2、C
【解析】
【分析】
根据众数的定义:一组数据中出现次数最多的那个数,称为这组数据的众数,据此结合条形图可得答案.
【详解】
解:由条形统计图知14岁出现的次数最多,
所以这些队员年龄的众数为14岁,
故选C.
【点睛】
本题考查了众数的定义及条形统计图的知识,解题的关键是能够读懂条形统计图及了解众数的定义.
3、B
【解析】
【分析】
根据调查的不同目的来选择全面调查或抽样调查,再判断四个选项即可.
【详解】
解:A选项,C选项,D选项选择调查方式合理,故A选项,C选项,D选项不符合题意.
B选项,为了了解某河流的水质情况,选择普查耗费人力,物力和时间较多,而选择抽样调查更加节约,且和普查的结果相差不大,故B选项符合题意.
故选:B.
【点睛】
本题考查全面调查和抽样调查,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.
4、D
【解析】
【分析】
由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.
【详解】
解:共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.
我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,
所以小红知道这组数据的中位数,才能知道自己是否进入决赛.
故选:D.
【点睛】
本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
5、A
【解析】
【分析】
根据总体的定义:表示考察的全体对象;样本的定义:按照一定的抽样规则从总体中取出的一部分个体,样本中个体的数目称为样本容量;个体的定义:总体中每个成员成为个体,进行逐一判断即可.
【详解】
解:A、1200名学生每天花费在数学学习上的时间是总体,故此选项符合题意;
B、每名学生每天花费在数学学习上的时间是个体,故此选项不符合题意;
C、从中抽取的100名学生每天花费在数学学习上的时间是样本,故此选项不符合题意;
D、样本容量是100,故此选项不符合题意;
故选A.
【点睛】
本题主要考查了样本,总体,个体和样本容量的定义,解题的关键在于熟知定义.
6、B
【解析】
【分析】
根据除法法则、圆与扇形的关系,单位“1”的含义,百分数的意义,以及扇形统计图的特点分析即可.
【详解】
解:①除以一个不等于零的数等于乘以这个数的倒数,故不正确;
②用四个圆心角都是且半径相等的扇形,一定可以拼成一个圆,故不正确;
③把5克盐放入100克水中,盐水的含盐率是5÷(5+100)≈4.8%,故不正确;
④设小方体重为a,则小明的体重为a.小方的体重比小明的体重多(a-a)÷a=25%,正确;
⑤扇形统计图可以直观地表示各部分数量与总数之间的关系,正确.
故选B.
【点睛】
本题考查了除法法则,圆与扇形的关系,单位“1”的含义,百分数的意义,以及扇形统计图的特点,掌握单位“1”的含义,百分数的意义是关键.
7、B
【解析】
【分析】
根据加权平均数的计算公式列出算式,再进行计算即可.
【详解】
解:根据题意得:
95×20%+90×30%+88×50%=90(分).
即小彤这学期的体育成绩为90分.
故选:B.
【点睛】
此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.
8、D
【解析】
【分析】
根据众数和中位数的定义求解即可.
【详解】
一共有9个数据,其中位数是第5个数据,
由表可知,这组数据的中位数为32,
这组数据中数据33出现次数最多,
所以这组数据的众数为33,
故选:D.
【点睛】
本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数,将一组数据按照从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,记住这些性质是解题关键.
9、D
【解析】
【分析】
抽样调查是通过对样本调查来估计总体特征,其调查结果是近似的;而全面调查得到的结果比较准确;根据对调查结果的要求对选项进行判断.
【详解】
A调查某班50名同学的视力情况,人数较少,应采用全面调查,故不符合要求;
B为了解新型冠状病毒确诊病人同一架飞机乘客的健康状况,意义重大,应采用全面调查,故不符合要求;
C为保证“神州9号”成功发射,对零部件进行检查,意义重大,应采用全面调查,故不符合要求;
D检查中卫市的空气质量,应采用抽样调查,故符合要求;
故选D.
【点睛】
本题考察了抽样调查与全面调查.解题的关键与难点在于理清对调查结果的要求.
10、D
【解析】
【分析】
根据频数之和等于总数,频数定义,加权平均数的计算,众数的定义逐项判断即可求解.
【详解】
解:A. 九年级(1)班共有学生10+20+15+5=50名,故原选项判断错误,不合题意;
B. 锻炼时间为8小时的学生有20名,故原选项判断错误,不合题意;
C. 平均数是小时,故原选项判断错误,不合题意;
D. 众数是8小时,故原选项判断正确,符合题意.
故选:D
【点睛】
本题考查了频数、加权平均数、众数等知识,理解相关概念,看到条形图是解题关键.
二、填空题
1、46.8°
【解析】
【分析】
利用占总体的百分比是,则这部分的圆心角是360度的,即可求出结果.
【详解】
解:该部分所对扇形圆心角为:.
故答案为:.
【点睛】
本题考查扇形统计图中扇形所对圆心角的度数与百分比的关系,熟练掌握扇形所对圆心角的计算方法是解题关键.
2、①②
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
解:①检查一大批灯泡的使用寿命采用抽样调查方式;
②调查某大城市居民家庭的收入情况采用抽样调查方式;
③了解全班同学的身高情况采用全面调查方式;
④了解NBA各球队在2015-2016赛季的比赛结果采用全面调查方式,
故答案是:①②.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、丙
【解析】
【分析】
根据加权平均数的定义求解即可,分别求得甲乙丙三人的平均成绩,进而即可判断,加权平均数计算公式为:,其中代表各数据的权.
【详解】
三项能力测试得分按6:2:2的比例,
三项能力的权分别为:0.6,0.2,0.2,
甲,
乙,
丙,
.
将被录用的是丙.
故答案为:丙.
【点睛】
本题考查了求加权平均数,掌握加权平均数的定义是解题的关键.
4、全面调查
【解析】
【分析】
根据全面调查和抽样调查的概念判断即可.
【详解】
解:为了全面的、可靠的得到我国人口信息,
所以国家统计局采取的调查方式是全面调查,
故答案为:全面调查.
【点睛】
本题考查的是全面调查和抽样调查,解题的关键是掌握通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.其一,调查者能力有限,不能进行普查,其二,调查过程带有破坏性,其三,有些被调查的对象无法进行普查.
5、144
【解析】
【分析】
首先计算出阅读3小时所占圆心角的度数,再乘以360°即可得出结论.
【详解】
解:阅读3小时所占圆心角的度数为1-16%-10%-10%-24%=40%,
360°×40%=144°,
故答案为:144.
【点睛】
本题考查了扇形统计图,正确的识别图形是解题的关键.
三、解答题
1、(1)60%;(2)补全图形见解析;(3)7.
【解析】
【分析】
(1)找出嘉嘉射箭成绩不低于9环有几次,再除以总次数即可.
(2)求出嘉嘉的平均成绩,结合题意可知淇淇的平均成绩,设淇淇最后一次成绩为m,利用求平均数公式即列出关于m的等式,求出m,即可补全统计图.
(3)根据众数的定义可求出a的值,即可知嘉嘉六次射箭成绩的中位数,结合中位数的定义,按由大到小或由小到大排列时只有7环和9环相邻时中位数才是8,故可得出,即确定b的最大值.
【详解】
(1)根据统计图可知嘉嘉射箭不低于9环的有3次,
故嘉嘉射箭成绩的优秀率为.
(2)嘉嘉的平均成绩为环
设淇淇最后一次成绩为m,
∴淇淇的平均成绩为
由题意可知,即,
解得:m=8.
故淇淇最后一次成绩为8,
由此,补全折线统计图如下:
(3)淇淇射击5次中8环出现了3次,
∴a=8,
∴嘉嘉六次射箭成绩的中位数是8环,
嘉嘉射箭前5次由小到大排列为:5,7,9,9,10.
∵,
∴当时,才能保证嘉嘉六次射箭成绩的中位数是8环.
故b的最大值为7.
【点睛】
本题考查折线统计图,平均数,众数,中位数.从统计图中得到必要的信息且掌握求平均数的公式,众数和中位数的定义是解答本题的关键.
2、(1);(2);(3),
【解析】
【分析】
(1)根据题意列式计算即可;
(2)根据平均数的定义即可得到结论;
(3)根据误差在“±0.25mm”以内的球可以作为合格产品,误差在“±0.15mm”以内的球可以作为良好产品分别占总数的百分比,即可求解.
【详解】
解:(1)其中偏差最大的乒乓球的直径是
故答案为
(2)这10乒乓球平均每个球的直径是
故答案为
(3)这些球的合格率是
良好率为
故答案为,
【点睛】
此题考查了正数和负数的意义,解题的关键是理解正和负的相对性,明确什么是一对具有相反意义的量.
3、(1)4,3;(2)钉钉,钉钉软件得分的平均数、众数和中位数均大于QQ直播;(3)学校会采用QQ直播软件进行教学,见解析
【解析】
【分析】
(1)将20名学生对钉钉直播软件的评分重新排列,再根据中位数的定义求解即可;根据众数的定义可得20名学生对钉钉直播软件的评分的众数;
(2)比较平均数、众数和中位数的大小即可得出答案;
(3)根据加权平均数的定义分别计算出钉钉软件和QQ直播软件的最终得分,比较大小即可得出答案.
【详解】
解:(1)将20名学生对钉钉直播软件的评分排列如下:
1,1,2,2,2,2,3,3,3,4,4,4,4,4,4,5,5,5,5,5,
其中位数为=4,
20名学生对钉钉直播软件的评分次数最多的是3分,有6次,
所以其众数为3,
补全表格如下:
故答案为:4、3;
(2)认为学生对这两款软件评价较高的是钉钉,理由是:钉钉软件得分的平均数、众数和中位数均大于QQ直播,
故答案为:钉钉,钉钉软件得分的平均数、众数和中位数均大于QQ直播.
(3)钉钉软件的最终得分为3.9×60%+3.4×40%=3.7(分),
QQ直播软件的最终得分为4×60%+3.35×40%=3.74(分),
∵3.74>3.7,
∴学校会采用QQ直播软件进行教学.
【点睛】
本题主要考查中位数、众数及平均数,熟练掌握求一组数据的众数、中位数及平均数是解题的关键.
4、6和3
【解析】
【分析】
根据众数的定义(一组数据中,出现次数最多的数据,叫这组数据的众数)得出即可.
【详解】
解:数据4,7,6,3,6,3中6和3的出现的次数最多,
∴数据4,7,6,3,6,3的众数是6和3.
【点睛】
本题考查了众数的定义,能熟记众数的定义是解此题的关键.
5、(1)70%;(2)15.1秒;(3)最快的比最慢的快了3.4秒
【解析】
【分析】
(1)求这10名男同学的达标人数除以总人数即可求解;
(2)根据10名男同学的成绩即可求出平均数;
(3)分别求出最快与最慢的时间,故可求解.
【详解】
解(1)从记录数据可知达标人数是7
∴ 达标率=7÷10×100%=70%
(2)15+(+1.2+0-0.8+2+0-1.4-0.5+0-0.3+0.8 )÷10=15.1(秒)
∴这10名男同学的平均成绩是15.1秒
(3)最快的是(15-1.4)=13.6(秒)最慢的是(15+2)=17(秒)
17-13.6=3.4(秒)
∴最快的比最慢的快了3.4秒.
【点睛】
此题主要考查有理数的混合运算的实际应用,解题的关键是熟知有理数的运算法则.
最高室温(℃)
30
31
32
33
天数
1
2
2
4
测试项目
成绩
甲
乙
丙
教学能力
77
73
73
科研能力
70
71
65
组织能力
64
72
84
钉钉
5
4
5
2
4
2
5
3
4
1
1
3
5
4
2
4
4
3
2
5
4
3
3
3
5
5
3
4
5
2
2
5
4
4
4
1
3
2
3
2
软件
平均数
众数
中位数
钉钉
3.4
4
QQ直播
3.35
3
软件
平均数
众数
中位数
钉钉
3.4
4
4
QQ直播
3.35
3
3
相关试卷
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课时训练,共19页。试卷主要包含了已知一组数据等内容,欢迎下载使用。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试精练,共17页。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试一课一练,共17页。