数学第九章 数据的收集与表示综合与测试课后测评
展开这是一份数学第九章 数据的收集与表示综合与测试课后测评,共21页。试卷主要包含了下列调查适合作抽样调查的是,为了解学生参加体育锻炼的情况等内容,欢迎下载使用。
京改版七年级数学下册第九章数据的收集与表示专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、数据处理过程中,以下顺序正确的是( )
A.收集数据→整理数据→描述数据→分析数据
B.收集数据→整理数据→分析数据→描述数据
C.收集数据→分析数据→整理数据→描述数据
D.收集数据→分析数据→描述数据→整理数据
2、某校人工智能科普社团有12名成员,成员的年龄情况统计如下:
年龄(岁) | 12 | 13 | 14 | 15 | 16 |
人数(人) | 1 | 4 | 3 | 2 | 2 |
则这12名成员的平均年龄是( )
A.13岁 B.14岁 C.15岁 D.16岁
3、学校快餐店有12元,13元,14元三种价格的饭菜供师生选择(每人限购一份).下图是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是( )
A.12.95元,13元 B.13元,13元 C.13元,14元 D.12.95元,14元
4、某校在计算学生的数学总评成绩时,规定期中考试成绩占,期末考试成绩占,林琳同学的期中数学考试成绩为分,期末数学考试成绩为分,那么他的数学总评成绩是( )
A.分 B.分 C.分 D.分
5、下列调查中,适合采用全面调查的是( )
A.了解一批电灯泡的使用寿命 B.调查榆林市中学生的视力情况
C.了解榆林市居民节约用水的情况 D.调查“天问一号”火星探测器零部件的的质量
6、下列调查适合作抽样调查的是( )
A.了解义乌电视台“同年哥讲新闻”栏目的收视率
B.了解某甲型H1N1确诊病人同机乘客的健康状况
C.了解某班每个学生家庭电脑的数量
D.“神七”载人飞船发射前对重要零部件的检查
7、空气是由多种气体混合而成的,为了简明扼要地介绍空气的组成情况,较好地描述数据,最适合使用的统计图是( )
A.扇形统计图
B.条形统计图
C.折线统计图
D.频数直方图
8、为了解学生参加体育锻炼的情况、现将九年级(1)班同学一周的体育锻炼情况绘制成如图所示不完整的条形统计图,已知锻炼7小时的人数占全班总人数的20%,则下列结论正确的是( )
A.九年级(1)班共有学生40名 B.锻炼时间为8小时的学生有10名
C.平均数是8.5小时 D.众数是8小时
9、2021年正值中国共产党建党100周年,某校开展“敬建党百年,传承红色基因”读书活动.为了了解某班开展的学习党史情况,该校随机抽取了9名学生进行调查,他们读书的本数分别是3、2、3、2、5、1、2、5、4,则这组数据的众数是( )
A.2 B.3 C.3和5 D.5
10、要调查下列问题,适合采用普查的是( )
A.中央电视台《开学第一课》的收视率 B.某城市居民6月份人均网上购物的次数
C.即将发射的气象卫星的零部件质量 D.银川市中小学生的视力情况
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某校名学生参加了“爱我中华”作文竞赛.为了解这次作文竞赛的基本情况,
从中随机抽取部分作文成绩汇总制成直方图(如右图),其中分数段与等第的关系如下表:(每组可含最低值,不含最高值)
分数 | 分以下 | ||||
等第 |
(1)抽取的作文数量为________篇;
(2)抽取的作文中,分及分以上的作文数量所占的百分比是________;
(3)根据抽样情况估计,这次作文竞赛成绩的中位数落在等第________组中;
(4)估计参加作文竞赛的名学生的作文成绩为等的人数约为________名.
2、三种圆规的单价依次是15元、10元、8元,销售量占比分别为20%,50%,30%,则三种圆规的销售均价为__________元.
3、某单位拟招聘一个管理员,其中某位考生笔试、试讲、面试三轮测试得分分别为92分,85分,90分,若依次按40%,40%,20%的比例确定综合成绩,则该名考生的综合成绩为______分.
4、在5个正整数a、b、c、d、e中,中位数是4,唯一的众数是6,则这5个数的和最大值是________.
5、已知一组数据由五个正整数组成,中位数是2,众数是2,且最大的数小于3,则这组数据之和的最小值是____________.
三、解答题(5小题,每小题10分,共计50分)
1、小明参加卖报纸的社会实践活动,他调查了一个报亭某天A、B、C三种报纸的销售量,并把调查结果绘制成如图所示条形统计图.
(1)求该天A、C报纸的销售量各占这三种报纸销售量之和的百分比.
(2)请绘制该天A、B、C三种报纸销售量的扇形统计图.
(3)小明准备按上述比例购进这三种报纸共100份,他应购进这三种报纸各多少份.
2、两个人群A,B的年龄(单位;岁)如下:
A:13,13,14,15,15,15,15,16,17,17;
B:3,4,4,5,5,6,6,6,54,57.
(1)人群A年龄的平均数、中位数和众数分别是多少?你认为用哪个数据可以较好地描述该人群年龄的集中趋势?
(2)人群B年龄的平均数、中位数和众数分别是多少?你认为用哪个数据可以较好地描述该人群年龄的集中趋势?
3、为了解地铁开通对节约“出行时间”影响情况,对地铁1号线上某趟列车上的部分乘客进行随机抽样调查.将调查结果分为、、、四类,其中表示“出行节约0﹣10分钟”,表示“出行节约10﹣30分钟”,表示“出行节约30分钟以上”,表示“其他情况”,并根据调查结果绘制了图①、图②这两个不完整的统计图表.
(1)求这次调查的总人数.
(2)补全条形统计图.
(3)在图②的扇形统计图中,求类所对应的扇形圆心角的度数.
4、根据下列统计图,写出相应分数的平均数、众数和中位数.
(1)
(2)
5、八年级(1)班的学习委员亮亮对本班每位同学每天课外完成数学作业的时间进行了一次统计,并根据收集的数据绘制了如图的统计图(不完整),请你根据图中提供的信息,解答下面的问题:(注:每组数据包括最大值,不包括最小值.)
(1)这个班的学生人数为______人;
(2)将图①中的统计图补充完整;
(3)完成课外数学作业的时间的中位数在______时间段内;
(4)如果八年级共有学生500名,请估计八年级学生课外完成数学作业时间超过1.5小时的有多少名?
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
根据数据处理的基本过程是:收集,整理,描述,分析数据即可解答.
【详解】
解:数据处理的基本过程是:收集,整理,描述,分析数据,
故选:A.
【点睛】
本题考查整理数据的过程,解题的关键是理解并牢记整理数据的过程.
2、B
【解析】
【分析】
根据平均数公式计算.
【详解】
解: (岁),
故选:B.
【点睛】
此题考查平均数的计算公式,熟记计算公式是解题的关键.
3、A
【解析】
【分析】
可以设得总人数为x人,然后求得总钱数,再求平均数即可;在此题中购13元价格的饭菜的人最多,所以众数为13元.
【详解】
解:设本校共有师生x人,则买饭菜的费用是①12元:25%x×12=3x
②13元:55%x×13=7.15x,
③14元:20%x×14=2.8x
该校师生购买饭菜费用的平均数是(3x+7.15x+2.8x)÷x=12.95元.
购13元饭菜的人最多,所以众数为13元.
故选:A.
【点睛】
此题考查了众数与平均数的知识,属于简单题目.一组数据中出现次数最多的数据叫做众数.把所有数据相加后再除以数据的个数即得平均数.
4、D
【解析】
【分析】
根据加权平均数的计算方法列式计算即可.
【详解】
解:他的数学总评成绩是分,
故选:D.
【点睛】
本题主要考查加权平均数算法,熟练掌握加权平均数的算法是解题的关键.
5、D
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析即可.
【详解】
解:A.了解一批电灯泡的使用寿命,具有破坏性,适合抽样调查,不符合题意;
B.调查榆林市中学生的视力情况,适合抽样调查,不符合题意;
C.了解榆林市居民节约用水的情况,适合抽样调查,不符合题意;
D.调查“天问一号”火星探测器零部件的的质量,必需采用全面调查,符合题意;
故选:D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
6、A
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
解:A、了解义乌电视台“同年哥讲新闻”栏目的收视率,应采用抽样调查的方式,故本选项符合题意;
B、了解某甲型H1N1确诊病人同机乘客的健康状况,应采用全面调查,故本选项不符合题意;
C、了解某班每个学生家庭电脑的数量,应采用全面调查,故本选项不符合题意;
D、“神七”载人飞船发射前对重要零部件的检查,应采用全面调查,故本选项不符合题意;
故选:A.
【点睛】
本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
7、A
【解析】
【分析】
根据扇形统计图、折线统计图、条形统计图、频数直方图各自的特点选择即可.
【详解】
解:根据题意,要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.
故选:A.
【点睛】
此题考查扇形统计图、折线统计图、条形统计图各自的特点.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.
8、D
【解析】
【分析】
根据频数之和等于总数,频数定义,加权平均数的计算,众数的定义逐项判断即可求解.
【详解】
解:A. 九年级(1)班共有学生10+20+15+5=50名,故原选项判断错误,不合题意;
B. 锻炼时间为8小时的学生有20名,故原选项判断错误,不合题意;
C. 平均数是小时,故原选项判断错误,不合题意;
D. 众数是8小时,故原选项判断正确,符合题意.
故选:D
【点睛】
本题考查了频数、加权平均数、众数等知识,理解相关概念,看到条形图是解题关键.
9、A
【解析】
【分析】
找到这组数据中出现次数最多的数,即可求解.
【详解】
解:这组数据3,2,3,2,5,1,2,5,4中,出现次数最多的是2分,因此众数是2;
故选:A.
【点睛】
本题考查众数的定义,属于基础题型.
10、C
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析各选项即可得到答案.
【详解】
解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;
B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;
C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;
D、调查银川市中小学生的视力情况,适合抽查,故本选项不合题意.
故选:C.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
二、填空题
1、 64 C 80
【解析】
【分析】
(1)根据直方图将所有小组的频数相加即可求得抽查的人数;
(2)用80及80分以上的人数除以总人数即可求得结果;
(3)根据总人数结合每一小组的人数确定中位数的位置即可;
(4)用总人数乘以A等所占的百分比即可.
【详解】
解:(1)抽取的作文数量为:;
故答案为:64;
(2);
故答案为:;
(3)∵共本,
∴中位数应是第和人的平均数;
∵和人均落在组,
∴中位数落在组;
故答案为:C;
(4)(名).
故答案为:80.
【点睛】
本题考查了频数分布直方图及用样本估计总体、中位数的知识,解决此类题目的关键是结合统计图或直方图并从中进一步整理出进一-步解题的有关信息.
2、10.4
【解析】
【分析】
代入加权平均数公式计算即可.
【详解】
,故填10.4.
【点睛】
本题考查了加权平均数,熟悉加权平均数公式是解决本题的关键.
3、88.8
【解析】
【分析】
根据加权平均数的求解方法求解即可.
【详解】
解:根据题意,该名考生的综合成绩为92×40%+85×40%+90×20%=88,8(分),
故答案为:88.8.
【点睛】
本题考查加权平均数,熟知加权平均数的求解方法是解答的关键.
4、21
【解析】
【分析】
根据题意设出五个数,由此求出符合题意的五个数的可能取值,计算其和即可.
【详解】
设五个数从小到大为a1,a2,a3,a4,a5,
依题意得a3=4,a4=a5=6,
a1,a2是1,2,3中两个不同的数,
符合题意的五个数可能有三种情形:
“1,2,4,6,6”,“1,3,4,6,6”,“2,3,4,6,6”,
1+2+4+6+6=19,1+3+4+6+6=20,2+3+4+6+6=21,
则这5个数的和最大值是21.
故答案为21.
【点睛】
本题考查了根据一组数据的中位数和众数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
5、8
【解析】
【分析】
将这组数据从小到大培训,处于中间位置的那个数是中位数即是2,众数则是数据中出现次数最多的数,根据题意计算即可;
【详解】
根据题意可得这组数据中由两个数为2,前面两个数为小于2的整数,均为1,
又最大的数小于3,
∴最后两个数均为2,
∴可得这组数据和的最小值为;
故答案是8.
【点睛】
本题主要考查了中位数和众数的应用,准确计算是解题的关键.
三、解答题
1、(1)该天A、C报纸的销售量各占这三种报纸销售量之和的20%和30%;(2)见解析;(3)小明应购进A种报纸20份,B种报纸50份,C种报纸30份
【解析】
【分析】
(1)用A,C报纸的销售量分别除以三种报纸销售量之和,然后求解即可;
(2)由(1)的结果绘制扇形统计图;
(3)用100分别乘以三种报纸所占的百分比即可求得结果.
【详解】
解:(1),.
∴ 该天A、C报纸的销售量各占这三种报纸销售量之和的20%和30%.
(2)A、B、C三种报纸销售量的扇形统计图如图所示.
(3)100×20%=20(份),100×50%=50(份),100×30%=30(份).
∴ 小明应购进A种报纸20份,B种报纸50份,C种报纸30份.
【点睛】
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
2、(1)人群A年龄的平均数、中位数、众数分别是:15岁、15岁、15岁;平均数、中位数或众数都能较好反映该人群年龄的集中趋势;(2)人群B年龄的平均数、中位数、众数分别是:15岁、5.5岁、6岁;相对而言,中位数或众数可以较好地描述该人群年龄的集中趋势.
【解析】
【分析】
(1)根据平均数、中位数和众数的定义,并且结合题意求解;
(2)根据平均数、中位数和众数的定义,并且结合题意求解.
【详解】
解:(1)人群A年龄的平均数是:(13×2+14+15×4+16+17×2)÷10=15(岁),
这10个数按从小到大的顺序排列为:13,13,14,15,15,15,15,16,17,17,中位数是:(15+15)÷2=15(岁),
15出现了4次,次数最多,所以众数是15岁;
用平均数、中位数或者众数都可以较好地描述该人群年龄的集中趋势;
(2)人群B年龄的平均数是:(3+4×2+5×2+6×3+54+57)÷10=15(岁),
这10个数按从小到大的顺序排列为:3,4,4,5,5,6,6,6,54,57,中位数是:(5+6)÷2=5.5(岁),
6出现了3次,次数最多,所以众数是6岁;
平均数受极端值的影响较大,用中位数或者众数可以较好地描述该人群年龄的集中趋势.
【点睛】
本题考查平均数、众数与中位数的意义,平均数是所有数据的和除以数据总数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数是指一组数据中出现次数最多的数据.
3、(1)50人;(2)见解析;(3)108°
【解析】
【分析】
(1)利用类的人数除以类所占百分比,即可求解;
(2)求出“出行节约30分钟以上”的人数,即可求解;
(3)用360°乘以类所占的百分比,即可求解.
【详解】
解:(1)调查的总人数是:(人).
(2)“出行节约30分钟以上”的人数有 (人),
补全图形,如图所示:
(3)A类所对应的扇形圆心角的度数是.
【点睛】
本题主要考查了条形统计图和扇形统计图,明确题意,准确获取信息是解题的关键.
4、(1)平均数为3分,众数为3分,中位数为3分;(2)平均数为3.42分,众数为3分,中位数为3分
【解析】
【分析】
(1)从条形统计图中得出相应的信息,然后根据算数平均数(总分数除以总人数)、众数(出现次数最多得数)、中位数(排序后中间两个数得平均数)的算法直接进行计算即可;
(2)从扇形统计图中读取相关的信息,然后根据加权平均数、中位数、众数的计算方法计算即可.
【详解】
解:
(1)平均分数为:,
从图中可得:有21人得3分,众数为3分,
共有40人,将分数从小到大排序后,第20和21位都是3分,
∴中位数为3分,
∴平均分数为3分,众数为3分,中位数为3分;
(2)平均分数为:,
扇形统计图中分占比,大于其他分数的占比,众数为3分;
中位数在的比例中,中位数为3分;
∴平均分数为3.42分,众数为3分,中位数为3分.
【点睛】
题目主要考查算数平均数、加权平均数、众数、中位数的计算方法,根据图象得出相应的信息进行计算是解题关键.
5、(1)40;(2)补图见解析;(3)1~1.5;(4)125名.
【解析】
【分析】
(1)利用1~1.5小时的频数和百分比即可求得总数;
(2)根据总数可计算出时间在0.5~1小时的人数,从而补全图形;
(3)根据中位数的定义得到完成作业时间的中位数是第20个数和第21个数的平均数,而0.5-1有12人,1-1.5有18人,即可得到中位数落在1-1.5h内;
(4)用七年级共有的学生数乘以完成作业时间超过1.5小时的人数所占的百分比即可.
【详解】
解:(1)(1)根据题意得:
该班共有的学生是:=40(人);
这个班的学生人数为40人;
(2)0.5~1小时的人数是:40×30%=12(人),
如图:
(3)共有40名学生,完成作业时间的中位数是第20个数和第21个数的平均数,即中位数在1-1.5小时内;
(4)∵超过1.5小时有10人,占总数的.
∴
答:估计八年级学生课外完成数学作业时间超过1.5小时的有125名.
【点睛】
本题考查了条形统计图:条形统计图反映了各小组的频数,并且各小组的频数之和等于总数.也考查了扇形统计图、中位数的概念.
相关试卷
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课时作业,共20页。试卷主要包含了下列说法中,下列做法正确的是等内容,欢迎下载使用。
这是一份2020-2021学年第九章 数据的收集与表示综合与测试达标测试,共18页。
这是一份初中数学第九章 数据的收集与表示综合与测试同步达标检测题,共18页。试卷主要包含了下列说法中,下列调查中,适合采用全面调查等内容,欢迎下载使用。