终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    京改版七年级数学下册第九章数据的收集与表示章节练习试卷(含答案详解)

    立即下载
    加入资料篮
    京改版七年级数学下册第九章数据的收集与表示章节练习试卷(含答案详解)第1页
    京改版七年级数学下册第九章数据的收集与表示章节练习试卷(含答案详解)第2页
    京改版七年级数学下册第九章数据的收集与表示章节练习试卷(含答案详解)第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版七年级下册第九章 数据的收集与表示综合与测试测试题

    展开

    这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试测试题,共18页。试卷主要包含了下列调查适合作抽样调查的是,山西被誉为“表里山河”,意思是,已知一组数据,下列调查中,最适合采用全面调查等内容,欢迎下载使用。
    京改版七年级数学下册第九章数据的收集与表示章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、为了丰富校园文化,学校艺术节举行初中生书法大赛,设置了10个获奖名额.结果共有21名选手进入决赛,且决赛得分均不相同.若知道某位选手的决赛得分,要判断它是否获奖,只需知道学生决赛得分的(     A.平均数 B.中位数 C.众数 D.方差2、下列调查中,其中适合采用抽样调查的是(       A.调查某班50名同学的视力情况B.为了解新型冠状病毒(SARS-CoV-2)确诊病人同一架飞机乘客的健康情况C.为保证“神舟9号”成功发射,对其零部件进行检查D.检测中卫市的空气质量3、为了解某校初一年级1200名学生每天花费在数学学习上的时间,抽取了100名学生进行调查,以下说法正确的是(       A.1200名学生每天花费在数学学习上的时间是总体 B.每名学生是个体C.从中抽取的100名学生是样本 D.样本容量是100名4、在共有人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名.只需要了解自己的成绩以及全部成绩的(       A.平均数 B.众数 C.中位数 D.最高分与最低分的差5、下列调查适合作抽样调查的是(       A.了解义乌电视台“同年哥讲新闻”栏目的收视率B.了解某甲型H1N1确诊病人同机乘客的健康状况C.了解某班每个学生家庭电脑的数量D.“神七”载人飞船发射前对重要零部件的检查6、小明前3次购买的西瓜单价如图所示,若第4次买的西瓜单价是元/千克,且这4个单价的中位数与众数相同,则a 的值为(        A.5 B.4 C.3 D.27、山西被誉为“表里山河”,意思是:外有大河,内有高山.下表是我省11个地市最高峰高度的统计结果,其中最高峰高度的中位数是(       城市太原大同阳泉长治晋城临汾运城吕梁晋中忻州朔州最高峰高度(米)278924201874252323582504.3235828312566.63061.12333A.2420米 B.2333米 C.2504.3米 D.2566.6米8、已知一组数据:66,66,62,68,63,这组数据的平均数和中位数分别是(       A.66,62 B.65,66 C.65,62 D.66,669、下列调查中,最适合采用全面调查(普查)方式的是(       A.检测生产的鞋底能承受的弯折次数B.了解某批扫地机器人平均使用时长C.选出短跑最快的学生参加全市比赛D.了解某省初一学生周体育锻炼时长10、数据处理过程中,以下顺序正确的是(       A.收集数据→整理数据→描述数据→分析数据B.收集数据→整理数据→分析数据→描述数据C.收集数据→分析数据→整理数据→描述数据D.收集数据→分析数据→描述数据→整理数据第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知一组数据:18,17,13,15,17,16,14,17,则这组数据的中位数与众数分别是__________.2、下列调查中,调查方式选择正确的是_____.①为了了解一批灯泡的使用寿命,选择抽样调查.②为了了解某公园全年的游客流量,选择抽样调查.③为了了解某1000枚炮弹的杀伤半径,选择全面调查.④为了了解一批袋装食品是否有防腐剂,选择全面调查.3、要想了解中国疫情的变化情况,最好选用 ___统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用 ___统计图.4、一个扇形统计图中,某部分占总体的百分比为13%,则该部分所对扇形圆心角为______.5、数据1、2、4、4、3、5、l、4、4、3、2、3、4、5,它们的众数是____、中位数是____、平均数是_______.三、解答题(5小题,每小题10分,共计50分)1、某学校计划在八年级开设“折扇”“刺绣”“剪纸”“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图.(部分信息未给出)请你根据以上信息解决下列问题:1)参加问卷调查的学生人数为   名,补全条形统计图(画图并标注相应数据);2)“陶艺”课程所对应的扇形圆心角的度数是多少?3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?2、某鞋厂为了了解初中学生穿鞋的尺码情况,对某中学八年级(1)班的20名男生进行了调查,结果如图所示.(1)写出这20个数据的平均数、中位数、众数;(2)在平均数、中位数和众数中,鞋厂最感兴趣的是哪一个?3、下图反映了九年级两个班的体育成绩.(1)不用计算,根据条形统计图,你能判断哪个班学生的体育成绩好一些吗?(2)你能从图中观察出各班学生体育成绩等级的“众数”吗?(3)依次将不及格、及格、中、良好、优秀记为55分,65分,75分,85分,95分,先分别估算一下两个班学生体育成绩的平均值,再算一算,看看你估计的结果怎么样.(4)九年级(1)班学生体育成绩的平均数、中位数和众数有什么关系?你能说说其中的理由吗?4、14,5,10,3,6的中位数是什么?5、一个小饭店所有员工的月收入情况如下: 经理领班迎宾厨师厨师助理服务员洗碗工人数/人1222382月收入/元4700190015002200150014001200(1)该饭店所有员工的月平均收入是多少元?月收入的中位数、众数呢?(2)你觉得用以上三个数据中的哪一个来描述该饭店员工的月收入水平更为恰当?说说你的理由.(3)某天,一个员工辞职了,若其他员工的月收入不变,平均收入升高了.你认为辞职的可能是哪个岗位上的员工? ---------参考答案-----------一、单选题1、B【解析】【分析】由于书法大赛设置了10个获奖名额,共有21名选手进入决赛,根据中位数的意义分析即可.【详解】解:将21名选手进入决赛不同的分数按从小到大排序后,中位数及中位数之后的共有11个数,故只要知道自己的分数和中位数就可以知道是否获奖了,故选B.【点睛】本题主要考查中位数,以及相关平均数、众数、方差的意义,熟练掌握相关知识是解题的关键.2、D【解析】【分析】抽样调查是通过对样本调查来估计总体特征,其调查结果是近似的;而全面调查得到的结果比较准确;根据对调查结果的要求对选项进行判断.【详解】A调查某班50名同学的视力情况,人数较少,应采用全面调查,故不符合要求;B为了解新型冠状病毒确诊病人同一架飞机乘客的健康状况,意义重大,应采用全面调查,故不符合要求;C为保证“神州9号”成功发射,对零部件进行检查,意义重大,应采用全面调查,故不符合要求;D检查中卫市的空气质量,应采用抽样调查,故符合要求;故选D.【点睛】本题考察了抽样调查与全面调查.解题的关键与难点在于理清对调查结果的要求.3、A【解析】【分析】根据总体的定义:表示考察的全体对象;样本的定义:按照一定的抽样规则从总体中取出的一部分个体,样本中个体的数目称为样本容量;个体的定义:总体中每个成员成为个体,进行逐一判断即可.【详解】解:A、1200名学生每天花费在数学学习上的时间是总体,故此选项符合题意;B、每名学生每天花费在数学学习上的时间是个体,故此选项不符合题意;C、从中抽取的100名学生每天花费在数学学习上的时间是样本,故此选项不符合题意;D、样本容量是100,故此选项不符合题意;故选A.【点睛】本题主要考查了样本,总体,个体和样本容量的定义,解题的关键在于熟知定义.4、C【解析】【分析】根据题意可得:由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有15个人,第8位选手的成绩是中位数,要判断是否进入前8名,故应知道自己的成绩和中位数.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.5、A【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A、了解义乌电视台“同年哥讲新闻”栏目的收视率,应采用抽样调查的方式,故本选项符合题意;B、了解某甲型H1N1确诊病人同机乘客的健康状况,应采用全面调查,故本选项不符合题意;C、了解某班每个学生家庭电脑的数量,应采用全面调查,故本选项不符合题意;D、“神七”载人飞船发射前对重要零部件的检查,应采用全面调查,故本选项不符合题意;故选:A.【点睛】本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、C【解析】【分析】根据统计图中的数据和题意,可以得到的值,本题得以解决.【详解】解:由统计图可知,前3次的中位数是3,第4次买的西瓜单价是千克,这四个单价的中位数恰好也是众数,故选:C.【点睛】本题考查条形统计图、中位数、众数,解题的关键是明确题意,利用数形结合的思想解答.7、C【解析】【分析】根据中位数的定义求解即可,中位数是将一组数据从小到大重新排列后,最中间的那个数(或最中间两个数的平均数).【详解】把这11个数从小到大排列为:1874,2333,2358,2358,2420,2504.3,2523,2566.6,2789,2831,3061.1,共有11个数,中位数是第6个数2504.3,故选:C.【点睛】此题考查了中位数,属于基础题,熟练掌握中位数的定义是解题关键.8、B【解析】【分析】根据平均数的计算公式(,其中是平均数,是这组数据,是数据的个数)和中位数的定义(将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数)即可得.【详解】解:这组数据的平均数是将这组数据按从小到大进行排序为则这组数据的中位数是66,故选:B.【点睛】本题考查了平均数和中位数,熟记公式和定义是解题关键.9、C【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A检测生产的鞋底能承受的弯折次数,具有破坏性,适合采用抽样调查;B了解某批扫地机器人平均使用时长,具有破坏性,适合采用抽样调查;C选出短跑最快的学生参加全市比赛,精确度要求高,适合采用全面调查;D了解某省初一学生周体育锻炼时长,调查数量较大且调查结果要求准确度不高,适合采用抽样调查;故选:C【点睛】题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、A【解析】【分析】根据数据处理的基本过程是:收集,整理,描述,分析数据即可解答.【详解】解:数据处理的基本过程是:收集,整理,描述,分析数据,故选:A.【点睛】本题考查整理数据的过程,解题的关键是理解并牢记整理数据的过程.二、填空题1、16.5,17【解析】【分析】根据众数和中位数的定义求解即可,中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.众数:在一组数据中出现次数最多的数.【详解】从小到大排列为:其中出现的次数最多,则众数为中位数为:故答案为:【点睛】本题考查了求众数和中位数,理解众数和中位数的定义是解题的关键.2、①②##②①【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:①了解1000个灯泡的使用寿命,具有破坏性,适用于抽样调查,故①正确;②了解某公园全年的游客流量,工作量大,时间长,故需要用抽样调查,故②正确;③了解生产的一批炮弹的杀伤半径,具有破坏性的调查,适用于抽样调查,故③错误;④了解一批袋装食品是否含有防腐剂,具有破坏性的调查,,适用于抽样调查,故④错误;故答案为:①②.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、     折线     扇形【解析】【分析】根据折线统计图不仅能够表示数量的多少而且能够表示数量的增减变化趋势;扇形统计图能够表示部分与整体之间的关系进行解答即可.【详解】解:根据统计图的特点可知:要想了解中国疫情,既要知道每天患病数量的多少,又要反映疫情变化的情况和趋势,最好选用折线统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用扇形统计图.故答案为:折线,扇形.【点睛】此题考查了统计图的选择,掌握三种统计图的特点和作用是解答此题的关键.4、46.8°【解析】【分析】利用占总体的百分比是,则这部分的圆心角是360度的,即可求出结果.【详解】解:该部分所对扇形圆心角为:故答案为:【点睛】本题考查扇形统计图中扇形所对圆心角的度数与百分比的关系,熟练掌握扇形所对圆心角的计算方法是解题关键.5、     4;     3.5;     3.21;【解析】【分析】根据平均数、众数与中位数的定义求解.所有数据的和除以14得平均数;将这组数据从小到大的顺序排列,最中间的两个数的平均数为中位数;4出现的次数最多为众数.【详解】 数据中4出现了5次,出现的次数最多,所以众数是4;把数据重新排列1、1、2、2、3、3、3、4、4、4、4、4、5、5,最中间的两个数是3和4,所以这组数据的中位数是3.5;这组数据的平均数是【点睛】本题为统计题,考查平均数、众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.三、解答题1、(1)50;见解析;(2)36°;(3)200名【解析】【分析】(1)根据折扇的人数和所占的百分比,求出调查的学生总人数,再用总人数减去其它课程的人数,求出剪纸的人数,从而补全统计图;(2)用选择“陶艺”课程的学生数除以总人数,再乘以360°即可得出答案;(3)用八年级的总人数乘以选择“刺绣”课程的学生所占的百分比即可.【详解】解:(1)参加问卷调查的学生人数为:(名剪纸的人数有:(名补全统计图如下:故答案为:502)“陶艺”课程所对应的扇形圆心角的度数是3)根据题意得:(名答:估计选择“刺绣”课程的学生有200名.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.2、(1)平均数为39.1码,中位数为39码,众数为40码;(2)鞋厂最感兴趣的是众数【解析】【分析】(1)根据平均数、众数与中位数的定义求解分析.40出现的次数最多为众数,第10、11个数的平均数为中位数.(2)鞋厂最感兴趣的是使用的人数,即众数.【详解】解:(1)平均数=(37×3+38×4+39×4+40×7+41×1+42×1)÷20=39.1.观察图表可知:有7人的鞋号为40,人数最多,即众数是40;中位数是第10、11人的平均数,(39+39)÷2=39,故答案为:平均数为39.1码,中位数为39码,众数为40码;(2)鞋厂最感兴趣的是使用的人数,即众数,故答案为:鞋厂最感兴趣的是众数.【点睛】本题考查平均数,众数与中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.正确理解中位数、众数及平均数的概念,是解决本题的关键.3、(1)九年级(2)班学生的体育成绩好一些;(2)均为“中”; (3)九年级(1)班的平均成绩为75分,九年级(2)班的平均成绩为78分;(4)三者相等,理由见解析【解析】【分析】(1)根据条形图判断即可;(2)根据众数的定义结合条形统计图即可判断;(3)先估计,再根据加权平均数计算即可;(4)根据条形统计图结合三者的定义解答即可.【详解】(1)九年级(2)班学生的体育成绩好一些.因为两班成绩等级中为“中”和“及格”的学生数分别相等,而九年级(2)班成绩等级为“优秀”和“良好”的学生数比九年级(1)班多,“不及格”的学生数比九年级(1)班少;(2)两个班级学生成绩等级的“众数”均为“中”;(3)估计九年级(1)班的平均成绩为75分,九年级(2)班的平均成绩为78分;九年级(1)班的平均成绩为(5×55+10×65+75×20+10×85+5×95)÷50=75分,九年级(2)班的平均成绩为(1×55+65×10+75×20+85×11+95×8)÷50=78分;和估计的结果相等;(4)三者相等,这可以从“对称”的角度理解.当然,平均数、中位数、众数相等,相应的统计图未必都是“对称”的【点睛】本题考查了从统计图获取信息的能力,条形图能清楚地表示出每个项目的具体数目,同时要掌握平均数的计算方法、理解众数、中位数的意义.4、6【解析】【分析】把这组数据按从小到大的顺序排列,位于最中间的一个数为中位数.【详解】解:将这组数据从小到大排列为:3,5,6,10,14,处在中间位置的数为6,因此中位数是6,答:14,5,10,3,6的中位数是6.【点睛】本题属于基础题,考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而做错,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5、(1)收入的平均数是1700元,中位数是1450元,众数是1400元;(2)中位数或众数,理由见解析;(3)迎宾、厨师助理、服务员或洗碗工.【解析】【分析】(1)根据平均数的计算方法(总收入除以总人数即可);根据中位数的计算方法(先将所有员工的月收入进行排序,然后取最中间的两个数求其平均数)即可;根据众数的意义(数据中出现次数最多的)即可得;(2)根据平均数、中位数、众数的意义看是否能代表大多数人的收入来判断即可;(3)由于此人辞职后平均工资升高了,说明此人的工资低于平均工资(1700元),即可得出结论.【详解】解:(1)月收入的平均数是1700元;最小的数为1200两个,后面是1400八个,后面是1500两个,第十个和第十一个数分别是14001500中位数为:月收入的中位数是1450元;数据中出现次数最多的数据是1400,8次,月收入的众数是1400元;(2)平均数受极端值4700元的影响较大,不太恰当,用中位数或众数描述员工的月收入水平更为恰当;(3)由于此人辞职后平均工资升高了,说明此人的工资低于平均工资(1700元),因此辞职的人可能是迎宾、厨师助理、服务员或洗碗工.【点睛】题目主要考查平均数、中位数、众数的计算方法及实际意义,理解各个数据的来源及运用是解题关键. 

    相关试卷

    初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试当堂达标检测题:

    这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试当堂达标检测题,共19页。

    北京课改版七年级下册第九章 数据的收集与表示综合与测试练习题:

    这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试练习题,共19页。试卷主要包含了下列说法中等内容,欢迎下载使用。

    北京课改版七年级下册第九章 数据的收集与表示综合与测试复习练习题:

    这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试复习练习题,共17页。试卷主要包含了某中学七,已知一组数据等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map