北京课改版七年级下册第七章 观察、猜想与证明综合与测试综合训练题
展开这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试综合训练题,共22页。试卷主要包含了下列说法中正确的个数是,如图,能判定AB∥CD的条件是,下列语句中,错误的个数是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,一副三角尺按不同的位置摆放,下列摆放方式中与相等的是( ).
A. B.
C. D.
2、下列各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
3、可以用来说明命题“x2<y2,则x<y”是假命题的反例是( )
A.x=4,y=3 B.x=﹣1,y=2 C.x=﹣2,y=1 D.x=2,y=﹣3
4、下列说法中正确的个数是( )
(1)在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c
(2)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a⊥c
(3)在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c
(4)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.
A.1 B.2 C.3 D.4
5、如图,能判定AB∥CD的条件是( )
A.∠2=∠B B.∠3=∠A C.∠1=∠A D.∠A=∠2
6、如果两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别是( )
A.48°,72° B.72°,108°
C.48°,72°或72°,108° D.80°,120°
7、如图,直线AB,CD相交于点O,AOC30,OE⊥AB,OF是AOD的角平分线.若射线OE,OF分C别以18/s,3/s的速度同时绕点O顺时针转动,当射线OE,OF重合时,至少需要的时间是( )
A.8s B.11s C.s D.13s
8、如图,下列给定的条件中,不能判定的是( )
A. B. C. D.
9、下列语句中,错误的个数是( )
①直线AB和直线BA是两条直线;
②如果,那么点C是线段AB的中点;
③两点之间,线段最短;
④一个角的余角比这个角的补角小.
A.1个 B.2个 C.3个 D.4个
10、下列说法中,真命题的个数为( )
①两条平行线被第三条直线所截,同位角相等;
②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行;
③过一点有且只有一条直线与这条直线平行;
④点到直线的距离是这一点到直线的垂线段;
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、填写推理理由
如图:EF∥AD,∠1=∠2,∠BAC=70°,把求∠AGD的过程填写完整.
证明:∵EF∥AD
∴∠2=________(______________)
又∵∠1=∠2
∴∠1=∠3________
∴AB∥________(____________)
∴∠BAC+________=180°(___________)
又∵∠BAC=70°
∴∠AGD=________
2、两个角和的两边互相平行,且角比角的2倍少30°,则这个角是____________度.
3、如图,已知ABCD,,,则____.
4、 “在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行.”这个命题是 ___命题.(填“真”或“假”)
5、已知,那么的余角是_____.
三、解答题(5小题,每小题10分,共计50分)
1、已知,与互余,OP是的角平分线.
(1)画出所有符合条件的图形.
(2)计算的度数.
2、3.已知,直线AB、CD交于点O,EO⊥AB,∠EOC:∠BOD=7:11.
(1)如图1,求∠DOE的度数;
(2)如图2,过点O画出直线CD的垂线MN,请直接写出图中所有度数为125°的角.
3、如图,直线AB,CD,EF相交于点O,OG⊥CD.
(1)已知∠AOC=38°12',求∠BOG的度数;
(2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.
4、如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.
5、问题情境:如图1,,,,求的度数.
小明的思路是:如图2,过作,通过平行线性质,可得______.
问题迁移:如图3,,点在射线上运动,,.
(1)当点在、两点之间运动时,、、之间有何数量关系?请说明理由.
(2)如果点在、两点外侧运动时(点与点、、三点不重合),请你直接写出、、之间有何数量关系.
---------参考答案-----------
一、单选题
1、C
【分析】
根据同角的余角相等,补角定义,和平角的定义、三角形内角和对各小题分析判断即可得解.
【详解】
解:A、+=180°−90°=90°,互余;
B、+=60°+30°+45°=135°;
C、根据同角的余角相等,可得=;
D、+=180°,互补;
故选:C.
【点睛】
本题考查了余角和补角、三角形内角和,是基础题,熟记概念与性质是解题的关键.
2、C
【分析】
根据对顶角的定义作出判断即可.
【详解】
解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是.
故选C.
【点睛】
本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
3、D
【分析】
根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.
【详解】
解:当x=2,y=﹣3时,x2<y2,但x>y,
故选:D.
【点睛】
此题考查的是命题与定理,要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法.
4、C
【分析】
根据平行线的性质分析判断即可;
【详解】
在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c,故(1)正确;
在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c,故(2)错误;
在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c,故(3)正确;
在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.故(4)正确;
综上所述,正确的是(1)(3)(4);
故选C.
【点睛】
本题主要考查了平行线的性质,准确分析判断是解题的关键.
5、D
【分析】
根据平行线的判定定理,找出正确选项即可.
【详解】
根据内错角相等,两直线平行,
∵∠A=∠2,
∴AB∥CD,
故选:D.
【点睛】
本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角,培养了学生“执果索因”的思维方式与能力.
6、B
【分析】
根据题意可得这两个角互补,设其中一个角为x,则另一个角为,由两个角之间的数量关系列出一元一次方程,求解即可得.
【详解】
解:∵两个角的两边两两互相平行,
∴这两个角可能相等或者两个角互补,
∵一个角的等于另一个角的,
∴这两个角互补,
设其中一个角为x,则另一个角为,
根据题意可得:,
解得:,,
故选:B.
【点睛】
题目主要考查平行线的性质、角的数量关系、一元一次方程等,理解题意,列出方程是解题关键.
7、D
【分析】
设首次重合需要的时间为t秒,则OE比OF要多旋转120゜+75゜,由此可得方程,解方程即可.
【详解】
∵∠BOD=∠AOC=30゜,OE⊥AB
∴∠EOD=∠EOB+∠BOD=90゜+30゜=120゜,∠AOD=180゜ - ∠AOC=150゜
∵OF平分∠AOD
∴
∴∠EOD+∠DOF=120゜+75゜
设OE、OF首次重合需要的时间为t秒,则由题意得:18t−3t=120+75
解得:t=13
即射线OE,OF重合时,至少需要的时间是13秒
故选:D
【点睛】
本题考查了角平分线的性质,补角的含义,垂直的定义,角的和差运算,运用了方程思想来解决,本题的实质是行程问题中的追及问题.
8、A
【分析】
根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.
【详解】
解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;
B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;
C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;
D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;
故选A.
【点睛】
本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.
9、B
【分析】
根据直线的定义、线段中点的定义、线段的性质、余角与补角的定义分别判断.
【详解】
解:①直线AB和直线BA是同一条直线,故该项符合题意;
②如果,那么点C不一定是线段AB的中点,故该项符合题意;
③两点之间,线段最短,故该项不符合题意;
④一个角的余角比这个角的补角小,故该项不符合题意,
故选:B.
【点睛】
此题考查了直线的定义、线段中点的定义、线段的性质、余角与补角的定义,属于基础定义题型.
10、B
【分析】
根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可
【详解】
①两条平行线被第三条直线所截,同位角相等,故①是真命题;
②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故②是真命题;
③在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故③不是真命题,
④点到直线的距离是这一点到直线的垂线段的长度,故④不是真命题,
故真命题是①②,
故选B
【点睛】
本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键.
二、填空题
1、∠3 两直线平行,同位角相等 等量代换 DG 内错角相等,两直线平行 ∠AGD 两直线平行,同旁内角互补 110°
【分析】
根据平行线的判定与性质,求解即可.
【详解】
∵EF∥AD,
∴∠2=∠3,(两直线平行,同位角相等)
又∵∠1=∠2,
∴∠1=∠3,(等量代换)
∴AB∥DG.(内错角相等,两直线平行)
∴∠BAC+∠AGD=180°.(两直线平行,同旁内角互补)
又∵∠BAC=70°,
∴∠AGD=110°.
故答案是:∠3,两直线平行,同位角相等,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补,110°
【点睛】
此题考查了平行线的判定与性质,解题的关键是掌握平行线的判定方法与性质.
2、或
【分析】
设为∠1和为∠2,根据图形可证得两角相等或互补,再利用方程建立等量关系求解即可.
【详解】
解:设的度数为,则的度数为,
如图1,和互相平行,可得:∠2=∠3,
同理:∠1=∠3,
∴∠2=∠1,
∴当两角相等时:,
解得:,
如图2,和互相平行,可得:∠2+∠3=,
而和互相平行,得∠1=∠3,
∴∠2+∠1=,
∴当两角互补时:,
解得:,
,
故填:或.
【点睛】
本题考查平行线的性质和方程的应用,分类讨论思想是关键.
3、95°
【分析】
过点E作EF∥AB,可得∠BEF+∠ABE=180°,从而得到∠BEF=60°,再由AB//CD,可得∠FEC=∠DCE,从而得到∠FEC=35°,即可求解.
【详解】
解:如图,过点E作EF∥AB,
∵EF//AB,
∴∠BEF+∠ABE=180°,
∵∠ABE=120°,
∴∠BEF=180°-∠ABE=180°-120°=60°,
∵EF//AB,AB//CD,
∴EF//CD,
∴∠FEC=∠DCE,
∵∠DCE=35°,
∴∠FEC=35°,
∴∠BEC=∠BEF+∠FEC=60°+35°=95°.
故答案为:95°
【点睛】
本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.
4、真
【分析】
根据平行线的判定即可得.
【详解】
解:“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行.”这个命题是真命题.
故答案为:真.
【点睛】
本题考查了平行线的判定、命题,熟练掌握平行线的判定是解题关键.
5、
【分析】
直接利用互余两角的关系,结合度分秒的换算得出答案.
【详解】
∵,
∴的余角为:.
故答案为:.
【点睛】
此题主要考查了余角的定义和分秒的转换,正确把握相关定义是解题关键.
三、解答题
1、(1)见解析;(2)15°或45°
【解析】
【分析】
(1)分当OC在外部时和当OC在内部时,两种情况,分别作图即可;
(2)根据(1)所求和角平分线,余角的定义求解即可.
【详解】
解:(1)如图所示,即为所求;
(2)当OC在外部时(如图1),
∵,与互余,
∴,
∴,
∴OP是的角平分线,
∴,
∴
当OC在内部时(如图2)
∵,与互余
∴,
∴
∴OP是的角平分线
∴
∴
综上:或45°.
【点睛】
本题主要考查了角平分线的定义,余角的定义,熟知角平分线和余角的定义是解题的关键.
2、(1)145°;(2)图中度数为125°的角有:∠EOM,∠BOC,∠AOD.
【解析】
【分析】
(1)由EO⊥AB,得到∠BOE=90°,则∠COE+∠BOD=90°,再由∠EOC:∠BOD=7:11,求出∠COE=35°,∠BOD=55°,则∠DOE=∠BOD+∠BOE=145°;
(2)由MN⊥CD,得到∠COM=90°,则∠EOM=∠COE+∠COM=125°,再由∠BOD=55°,得到∠BOC=180°-∠BOD=125°,则∠AOD=∠BOC=125°.
【详解】
解:(1)∵EO⊥AB,
∴∠BOE=90°,
∴∠COE+∠BOD=90°,
∵∠EOC:∠BOD=7:11,
∴∠COE=35°,∠BOD=55°,
∴∠DOE=∠BOD+∠BOE=145°;
(2)∵MN⊥CD,
∴∠COM=90°,
∴∠EOM=∠COE+∠COM=125°,
∵∠BOD=55°,
∴∠BOC=180°-∠BOD=125°,
∴∠AOD=∠BOC=125°,
∴图中度数为125°的角有:∠EOM,∠BOC,∠AOD.
【点睛】
本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义.
3、(1)51°48′;(2)OG是∠EOB的平分线,理由见解析
【解析】
【分析】
(1)根据互为余角的意义和对顶角的性质,可得∠AOC=∠BOD=38°12′,进而求出∠BOG;
(2)求出∠EOG=∠BOG即可.
【详解】
解:(1)∵OG⊥CD.
∴∠GOC=∠GOD=90°,
∵∠AOC=∠BOD=38°12′,
∴∠BOG=90°﹣38°12′=51°48′,
(2)OG是∠EOB的平分线,
理由:
∵OC是∠AOE的平分线,
∴∠AOC=∠COE=∠DOF=∠BOD,
∵∠COE+∠EOG=∠BOG+∠BOD=90°,
∴∠EOG=∠BOG,
即:OG平分∠BOE.
【点睛】
本题主要考查角平分线的定义及余角,熟练掌握角平分线的定义及余角是解题的关键.
4、∠BOC的补角有两个∠BOD和∠AOC;∠BOC的邻补角为∠AOC;∠BOC没有对顶角.
【解析】
【分析】
由题意直接根据补角,邻补角及对顶角的定义进行分析即可找出.
【详解】
解:因为∠BOC+∠AOC=180º(平角定义),
所以∠AOC是∠BOC的补角,
∠AOD=∠BOC(已知),
所以∠BOC+∠BOD=180º.
所以∠BOD是∠BOC的补角.
所以∠BOC的补角有两个:∠BOD和∠AOC.
因为∠AOC和∠BOC相邻,
所以∠BOC的邻补角为:∠AOC.
∠BOC没有对顶角.
【点睛】
本题考查补角,邻补角及对顶角的定义,熟练掌握补角,邻补角及对顶角的定义是解题的关键.
5、问题情境:;问题迁移:(1);理由见解析;(2)当点在、两点之间时,;当点在射线上时,.
【解析】
【分析】
问题情境:理由平行于同一条直线的两条直线平行得到 PE∥AB∥CD,通过平行线性质来求∠APC;
(1)过点P作,得到理由平行线的性质得到,,即可得到;
(2)分情况讨论当点P在B、O两点之间,以及点P在射线AM上时,两种情况,然后构造平行线,利用两直线平行内错角相等,通过推理即可得到答案.
【详解】
解:问题情境:
∵AB∥CD,PE∥AB,
∴PE∥AB∥CD,
∴∠A+∠APE=180°,∠C+∠CPE=180°,
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°,
∴∠APC=∠APE+∠CPE=50°+60°=110°;
(1);
过点P作,
又因为,所以,
则,,
所以;
(2)情况1:如图所示,当点P在B、O两点之间时,
过P作PE∥AD,交ON于E,
∵AD∥BC,
∴AD∥BC∥PE,
∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,
∴∠CPD=∠DPE-∠CPE=∠α-∠β,
情况2:如图所示,点P在射线AM上时,
过P作PE∥AD,交ON于E,
∵AD∥BC,
∴AD∥BC∥PE,
∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,
∴∠CPD=∠CPE-∠DPE=∠β-∠α
【点睛】
本题主要考查了借助辅助线构造平行线,利用平行线的性质进行推理,准确分析证明是解题的关键.
相关试卷
这是一份初中第七章 观察、猜想与证明综合与测试达标测试,共21页。试卷主要包含了如图,直线AB,下列说法中正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试一课一练,共21页。试卷主要包含了下列说法不正确的是,已知,则的余角的补角是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试测试题,共19页。试卷主要包含了如图,,交于点,,,则的度数是,下列说法,下列说法中正确的是等内容,欢迎下载使用。