初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试复习练习题
展开这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试复习练习题,共25页。
京改版七年级数学下册第七章观察、猜想与证明必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知和都是直角,图中互补的角有( )对.
A.1 B.2 C.3 D.0
2、若∠α=55°,则∠α的余角是( )
A.35° B.45° C.135° D.145°
3、如图,已知直线,相交于O,平分,,则的度数是( )
A. B. C. D.
4、如图,平行线AB,CD被直线AE所截.若∠1=70°,则∠2的度数为( )
A.80° B.90° C.100° D.110°
5、如图,若要使与平行,则绕点至少旋转的度数是( )
A. B. C. D.
6、如图,下列条件中,不能判断∥的是( )
A.∠1=∠3 B.∠2=∠4 C.∠4+∠5=180° D.∠3=∠4
7、如图,O是直线AB上一点,OE平分∠AOB,∠COD=90°,则图中互余的角有( )对.
A.5 B.4 C.3 D.2
8、一副三角板摆放如图所示,斜边FD与直角边AC相交于点E,点D在直角边BC上,且FDAB,∠B=30°,则∠ADB的度数是( )
A.95° B.105° C.115° D.125°
9、如图,直尺的一条边经过直角三角尺的直角顶点且平分直角,它的对边恰巧经过60°角的顶点.则∠1的大小是( )
A.30° B.45° C.60° D.75°
10、下列说法中,假命题的个数为( )
①两条直线被第三条直线所截,同位角相等
②如果两条直线都与第三条直线垂直,那么这两条直线互相平行
③过一点有且只有一条直线与这条直线平行
④在同一平面内,过一点有且只有一条直线与已知直线垂直
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知∠A的补角是142°,则∠A的余角的度数是___________.
2、如图,已知AB∥CD,∠1=55°,则∠2的度数为 ___.
3、如图,已知ABCD,,,则____.
4、已知一个角的补角是这个角的余角的3倍,则这个角是______度.
5、如果∠α是直角的,则∠α的补角是______度.
三、解答题(5小题,每小题10分,共计50分)
1、如图,点A、B、C在8×5网格的格点上,每小方格是边长为1个单位长度的正方形.请按要求画图,并回答问题:
(1)延长线段AB到点D,使BD=AB;
(2)过点C画CE⊥AB,垂足为E;
(3)点C到直线AB的距离是 个单位长度;
(4)通过测量 = ,并由此结论可猜想直线BC与AF的位置关系是 .
2、如图所示,AB//CD,点E为两条平行线外部一点,F为两条平行线内部一点,G、H分别为AB、CD上两点,GB平分∠EGF,HF平分∠EHD,且2∠F与∠E互补,求∠EGF的大小.
3、如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC
证明:∵ ∠1+∠AFE=180°
∴ CD∥EF( , )
∵∠A=∠2 ∴( )
( , )
∴ AB∥CD∥EF( , )
∴ ∠A= ,∠C= ,
( , )
∵ ∠AFE =∠EFC+∠AFC ,∴ = .
4、如图①,已知∠AOD为直角,OB平分∠AOC,OD平分∠COE.
(1)将∠AOC,∠AOE,∠AOB,∠AOD按从小到大的顺序用“<”号连接.
(2)与∠BOC相等的角为_____________,与∠BOC互余的角为______________.
(3)若∠DOE=24°,求∠AOC和∠AOB的度数.
(4)反向延长射线OA到F,如图②,∠EOF与∠AOC是否相等?____________(直接填“相等”或“不相等”或“不一定相等”).
5、已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.
【基础问题】如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).
证明:过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD( )
∵MN∥AB,
∴∠A=( )( )
∵MN∥CD,
∴∠D= ( )
∴∠AGD=∠AGM+∠DGM=∠A+∠D.
【类比探究】如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.
【应用拓展】如图3,AH平分∠GAB,DH交AH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.
---------参考答案-----------
一、单选题
1、B
【分析】
如图,延长BO至点E,根据平角的定义,由∠BOD=90°,得∠DOE=180°−∠DOB=90°,那么∠DOE=∠DOB=∠AOC=90°,故∠AOC+∠BOD=180°.由∠DOE=∠DOB=∠AOC=90°,得∠AOE+∠AOD=∠AOD+∠COD=∠DOC+∠BOC,那么∠AOE=∠COD,∠AOD=∠BOC.由∠AOE+∠AOB=180°,得∠COD+∠AOB=180°.
【详解】
解:如图,延长BO至点E.
∵∠BOD=90°,
∴∠DOE=180°−∠DOB=90°.
∴∠DOE=∠DOB=∠AOC=90°.
∴∠AOC+∠BOD=180°,∠AOE+∠AOD=∠AOD+∠COD=∠DOC+∠BOC.
∴∠AOE=∠COD,∠AOD=∠BOC.
∵∠AOE+∠AOB=180°,
∴∠COD+∠AOB=180°.
综上:∠AOC与∠BOD互补,∠AOB与∠COD互补,共2对.
故选:B.
【点睛】
本题主要考查补角,熟练掌握补角的定义是解决本题的关键.
2、A
【分析】
根据余角的定义即可得.
【详解】
由余角定义得∠α的余角为90°减去55°即可.
解:由余角定义得∠α的余角等于90°﹣55°=35°.
故选:A.
【点睛】
本题考查了余角的定义,熟记定义是解题关键.
3、C
【分析】
先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.
【详解】
解:∵OA平分∠EOC,∠EOC=100°,
∴∠AOC=∠EOC=50°,
∴∠BOC=180°﹣∠AOC=130°.
故选:C.
【点睛】
本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.
4、D
【分析】
直接利用对顶角以及平行线的性质分析得出答案.
【详解】
解:
∵∠1=70°,
∴∠1=∠3=70°,
∵ABDC,
∴∠2+∠3=180°,
∴∠2=180°−70°=110°.
故答案为:D.
【点睛】
此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.
5、A
【分析】
根据“两直线平行,内错角相等”进行计算.
【详解】
解:如图,
∵l1∥l2,
∴∠AOB=∠OBC=42°,
∴80°-42°=38°,
即l1绕点O至少旋转38度才能与l2平行.
故选:A.
【点睛】
考查了旋转的性质和平行线的性质,根据平行线的性质得到∠AOB=∠OBC=42°是解题的关键,难度不大.
6、D
【分析】
根据平行线的判定定理对各选项进行逐一判断即可.
【详解】
解:、,内错角相等,
,故本选项错误,不符合题意;
、,同位角相等,
,故本选项错误,不符合题意;
、,同旁内角互补,
,故本选项错误,不符合题意;
、,它们不是内错角或同位角,
与的关系无法判定,故本选项正确,符合题意.
故选:D.
【点睛】
本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.
7、B
【分析】
根据余角的定义找出互余的角即可得解.
【详解】
解:∵OE平分∠AOB,
∴∠AOE=∠BOE=90°,
∴互余的角有∠AOC和∠COE,∠AOC和∠BOD,∠COE和∠DOE,∠DOE和∠BOD共4对,
故选:B.
【点睛】
本题考查了余角的定义,从图中确定余角时要注意按照一定的顺序,防止遗漏.
8、B
【分析】
由题意可知∠ADF=45°,则由平行线的性质可得∠B+∠BDF=180°,求得∠BDF=150°,从而可求∠ADB的度数.
【详解】
解:由题意得∠ADF=45°,
∵,∠B=30°,
∴∠B+∠BDF=180°,
∴∠BDF=180°﹣∠B=150°,
∴∠ADB=∠BDF﹣∠ADF=105°.
故选:B
【点睛】
本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同旁内角互补.
9、D
【分析】
由AC平分∠BAD,∠BAD=90°,得到∠BAC=45°,再由BD∥AC,得到∠ABD=∠BAC=45°,∠1+∠CBD=180°,由此求解即可.
【详解】
解:∵AC平分∠BAD,∠BAD=90°,
∴∠BAC=45°
∵BD∥AC,
∴∠ABD=∠BAC=45°,∠1+∠CBD=180°,
∵∠CBD=∠ABD+∠ABC=45°+60°=105°,
∴∠1=75°,
故选D.
【点睛】
本题主要考查了平行线的性质和角平分线的定义,解题的关键在于能够熟练掌握平行线的性质.
10、C
【分析】
根据平行线的判定与性质、垂直的性质逐个判断即可得.
【详解】
解:①两条平行线被第三条直线所截,同位角相等,则原说法错误,是假命题;
②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,则原说法错误,是假命题;
③过直线外一点有且只有一条直线与这条直线平行,则原说法错误,是假命题;
④在同一平面内,过一点有且只有一条直线与已知直线垂直,则原说法正确,是真命题;
综上,假命题的个数是3个,
故选:C.
【点睛】
本题考查了平行线的判定与性质、垂直的性质,熟练掌握各性质是解题关键.
二、填空题
1、52°度
【分析】
两角互补和为180°,两角互余和为90°,先求出∠A,再用90°-∠A即可解出本题.
【详解】
解:∵∠A的补角为142°,
∴∠A=180°-142°=38°,
∴∠A的余角为90°-∠A=90°-38°=52°.
故答案为:52°.
【点睛】
本题考查了余角和补角,解题的关键是熟悉两角互余和为90°,互补和为180°.
2、
【分析】
如图(见解析),先根据平行线的性质可得,再根据邻补角的定义即可得.
【详解】
解:如图,,
,
,
故答案为:.
【点睛】
本题考查了平行线的性质、邻补角,熟练掌握平行线的性质是解题关键.
3、95°
【分析】
过点E作EF∥AB,可得∠BEF+∠ABE=180°,从而得到∠BEF=60°,再由AB//CD,可得∠FEC=∠DCE,从而得到∠FEC=35°,即可求解.
【详解】
解:如图,过点E作EF∥AB,
∵EF//AB,
∴∠BEF+∠ABE=180°,
∵∠ABE=120°,
∴∠BEF=180°-∠ABE=180°-120°=60°,
∵EF//AB,AB//CD,
∴EF//CD,
∴∠FEC=∠DCE,
∵∠DCE=35°,
∴∠FEC=35°,
∴∠BEC=∠BEF+∠FEC=60°+35°=95°.
故答案为:95°
【点睛】
本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.
4、
【分析】
设这个角为 则这个角的补角为: 这个角的余角为: 根据等量关系一个角的补角是这个角的余角的3倍,列方程,解方程可得.
【详解】
解:设这个角为 则这个角的补角为: 这个角的余角为:
,
,
,
,
答:这个角为.
故答案为:.
【点睛】
本题考查的是余角与补角的含义,一元一次方程的应用,掌握以上知识是解题的关键.
5、157.5
【分析】
先根据直角的求出∠α,然后根据补角的定义求解即可.
【详解】
解:由题意知:∠α=90°×=22.5°,
则∠α的补角=180°-22.5°=157.5°
故答案为:157.5
【点睛】
本题考查了角的和倍差的计算和补角的定义,熟练掌握计算方法是解题的关键.
三、解答题
1、(1)见解析;(2)见解析;(3)2;(4),平行
【解析】
【分析】
(1)根据网格的特点和题意,延长到,使;
(2)根据网格是正方形,垂线的定义,画出,垂足为,点在线段的延长线上,
(3)点C到直线AB的距离即的长,网格的特点即可数出的长;
(4)根据同位角相等,两直线平行,或内错角相等,两直线平行即可得,即可知测量的角度
【详解】
解:(1)(2)如图所示,
(3)由网格可知
即点C到直线AB的距离是个单位长度
故答案为:2
(4)通过测量,可知
故答案为:,平行
【点睛】
本题考查了画线段,画垂线,平行线的性质与判定,点到直线的距离,掌握以上知识是解题的关键.
2、∠EGF=120°.
【解析】
【分析】
过点F作FM∥AB,设AB于EH的交点为N,先设,则,由题意及平行线的性质得,,得到,,由于与互补,得到,最终问题可求解
【详解】
解:过点F作FM∥AB,设AB于EH的交点为N,如图所示:
设,
∵GB平分∠EGF,HF平分∠EHD,
∴,
∵AB//CD,
∴FM∥AB∥CD,
∴,
∴,,
即,,
∵与互补,
∴,
∴,
∴,
∴.
【点睛】
本题考查平行线的性质及三角形外角的性质,解题的关键是设,且由题意得到x,y的关系.
3、同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【解析】
【分析】
根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE ,∠C=∠EFC,根据角的和可得 ∠AFE =∠EFC+∠AFC 即可.
【详解】
证明:∵ ∠1+∠AFE=180°
∴ CD∥EF(同旁内角互补,两直线平行),
∵∠A=∠2 ,
∴( AB∥CD ) (同位角相等,两直线平行),
∴ AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行)
∴ ∠A= ∠AFE ,∠C= ∠EFC,(两直线平行,内错角相等)
∵ ∠AFE =∠EFC+∠AFC ,
∴ ∠A = ∠C+∠AFC .
故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【点睛】
本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.
4、(1)∠AOB<∠AOC<∠AOD<∠AOE;(2)∠AOB,∠BOD;(3)66°,33°;(4)相等
【解析】
【分析】
(1)由图象可知,开合幅度越大,角越大,故∠AOB<∠AOC<∠AOD<∠AOE
(2)OB平分∠AOC,故∠BOC=∠AOB.互余的定义为两角相加为90°,∠AOB+∠BOD=90°,故∠BOC+∠BOD =90°.
(3)因为OD平分∠COE,所以∠COD=∠DOE=24°,在∠AOD中∠AOD=∠AOC+∠DOE,故∠AOC=66°,OB平分∠AOC,故∠BOC=∠AOB=∠AOC=33°.
(4)射线OA延长到F,即说明∠AOF为平角,则∠DOF=∠AOD=90°,又因为∠COD=∠DOE,所以∠DOF-∠DOE=∠AOD-∠COD,故∠EOF=∠AOC.
【详解】
解:(1)∠AOB<∠AOC<∠AOD<∠AOE .
(2)已知∠AOD为直角,OB平分∠AOC,OD平分∠COE,
∴∠BOC=∠AOB,∠DOC=∠EOD,
又∵∠AOD=90°且∠AOD=∠BOC+∠AOB+∠COD,
∠BOC+∠BOD=90°.
(3)∵∠AOD为直角,
∴∠AOD=90°.
∵OD平分∠COE,∠DOE=24°,
∴∠COD=∠DOE=24°.
∴∠AOC=∠AOD-∠DOE=90°-24°=66°.
∵OB平分∠AOC,
∴∠AOB= ∠AOC= 66°=33°.
(4)∵∠AOF为平角
∴∠DOF=180°-∠AOD
∴∠DOF=180°-90°=90°
∴∠EOF=∠DOF-∠DOE=∠AOD-∠COD=∠AOC
故∠EOF和∠AOC相等.
【点睛】
本题考查了几何图形中角度计算问题,熟练运用角平分线、补角、余角等性质是解题的关键.
5、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.
【解析】
【分析】
基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D;
类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.
应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.
【详解】
解:基础问题:过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD(平行于同一条直线的两条直线平行),
∵MN∥AB,
∴∠A=∠AGM(两直线平行,内错角相等),
∵MN∥CD,
∴∠D=∠DGM(两直线平行,内错角相等),
∴∠AGD=∠AGM+∠DGM=∠A+∠D.
故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;
类比探究:如图所示,过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD,
∵MN∥AB,
∴∠A=∠AGM,
∵MN∥CD,
∴∠D=∠DGM,
∴∠AGD=∠AGM-∠DGM=∠A-∠D.
应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,
又∵AB∥CD,
∴MN∥CD,PQ∥CD
∵MN∥AB,PQ∥AB,
∴∠BAG=∠AGM,∠BAH=∠AHP,
∵MN∥CD,PQ∥CD,
∴∠CDG=∠DGM,∠CDH=∠DHP,
∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,
∴∠GDH=44°,∠DHP=22°,
∴∠CDG=66°,∠AHP=54°,
∴∠DGM=66°,∠BAH=54°,
∵AH平分∠BAG,
∴∠BAG=2∠BAH=108°,
∴∠AGM=108°,
∴∠AGD=∠AGM-∠DGM=42°.
【点睛】
本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试测试题,共22页。试卷主要包含了下列命题是假命题的有,若的补角是150°,则的余角是,如图,直线AB,下列命题中,真命题是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试测试题,共19页。试卷主要包含了如图,,交于点,,,则的度数是,下列说法,下列说法中正确的是等内容,欢迎下载使用。
这是一份2021学年第七章 观察、猜想与证明综合与测试练习,共22页。试卷主要包含了下列说法中正确的个数是,下列说法中,假命题的个数为,下列说法中正确的是,如图,下列条件中能判断直线的是等内容,欢迎下载使用。