2021学年第五章 二元一次方程组综合与测试课堂检测
展开这是一份2021学年第五章 二元一次方程组综合与测试课堂检测,共19页。试卷主要包含了已知二元一次方程组则,下列方程组为二元一次方程组的是,用代入消元法解关于等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、小明在解关于x、y的二元一次方程组时得到了正确结果.后来发现、处被墨水污损了,请你帮他计算出、处的值分别是( ).
A.1、1B.2、1C.1、2D.2、2
2、已知方程组中,x、y的值相等,则m等于( ).
A.1或-1B.1C.5D.-5
3、下列各方程中,是二元一次方程的是( )
A.=y+5xB.3x+2y=2x+2yC.x=y2+1D.
4、已知方程,,有公共解,则的值为( ).
A.3B.4C.0D.-1
5、关于x,y的方程是二元一次方程,则m和n的值是( )
A.B.C.D.
6、已知二元一次方程组则( )
A.6B.4C.3D.2
7、用代入法解方程组,以下各式正确的是( )
A.B.
C.D.
8、下列方程组为二元一次方程组的是( )
A.B.C.D.
9、用代入消元法解关于、的方程组时,代入正确的是( )
A.B.
C.D.
10、中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头价值y两,根据题意可列方程组为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、将一张面值50元的人民币,兑换成5元或10元的零钱,两种人民币都要有,那么共有_____种兑换方案.
2、现有20吨货物,要租用货车运走.汽车公司有两种货车,大货车每车可以装7吨货物,运一次要600元,小货车每车可以装4吨,运一次要400元.要使货物全部运走,至少需要运费___元.
3、如图,为某三岔路口交通环岛的简化模型,在某高峰时刻,单位时间进出路口A,B,C的机动车辆数如图所示.图中分别表示该时段单位时间通过路段AB,BC,CA的机动车辆数.(假设单位时间内在上述路段中同一路段上驶入与驶出的车辆数相等),试比较的大小关系_________.
4、如图所示,矩形ABCD被分成一些正方形,已知AB=32cm,则矩形的另一边AD=________cm.
5、用加减法解方程组时,①+②得________,即________;②-①得________,即________,所以原方程组的解为________.
三、解答题(5小题,每小题10分,共计50分)
1、中药是我国的传统医药,其独特的疗效体现了我们祖先的智慧,并且在抗击新冠疫情中,中医药发挥了重要的作用.现某中药材种植基地欲将一批150吨的重要中药材运往某药品生产厂,现有甲、乙两种车型供运输选择,每辆车的运载能力(假设每辆车均满载)和运费如下表所示:
若全部中药材用甲、乙两种车型一次性运完,需支付运费9900元,问甲、乙两种车型各需多少辆?
2、为纪念今年建党一百周年,学校集团党委决定印制《党旗飘扬》、《党建知识》两种党建读本.已知印制《党旗飘扬》5册和《党建知识》10册,需要350元;印制《党旗飘扬》3册和《党建知识》5册,需要190元.
(1)求印制两种党建读本每册各需多少元?
(2)考虑到宣传效果和资金周转,印制《党旗飘扬》不能少于60册,且用于印制两种党建读本的资金不能超过2630元,现需要印制两种读本共100册,问有哪几种印制方案?哪种方案费用最少?
3、某校为了丰富学生的业余生活,组织了一次棋类的比赛,准备购买若干跳棋和军棋作为奖品,若购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元.
(1)求购买一副跳棋和一副军棋各需要多少钱?
(2)学校准备购买跳棋与军棋共80副作为奖品,根据规定购买的总费用不能超过600元,则学校最多可以购买多少副军棋?
4、如图,已知点A、点B在数轴上表示的数分别是-20、64,动点M从点A出发,以每秒若干个单位长度的速度向右匀速运动,动点N从点B出发,以每秒若干个单位长度的速度向左匀速运动.若点M、N同时出发,则出发后12秒相遇;若点N先出发7秒,则点M出发10秒后与点N相遇.动点M、N运动的速度分别是多少?
5、判断下列各组数是否是二元一次方程组的解.
(1) (2)
---------参考答案-----------
一、单选题
1、B
【分析】
将方程组的解代入方程求解即可.
【详解】
将代入,得,
解之得.
故选:B.
【点睛】
此题考查解二元一次方程组,掌握解二元一次方程组的方法:代入法和加减法,并根据方程组的特点选择恰当的解法是解题的关键.
2、B
【分析】
根据x、y的值相等,利用第二个方程求出x的值,然后代入第一个方程求解即可.
【详解】
解:解方程组,
得:,
∵x、y的值相等,
∴,
解得.
故选:B.
【点睛】
本题考查了解二元一次方程组,根据x、y的值相等利用第二个方程求出x的值是解题的关键.
3、D
【分析】
根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.
【详解】
解:A、不是整式方程;故错误.
B、3x+2y=2x+2y移项,合并同类项,得x=0,只有一个未知数;故错误.
C、未知数y最高次数是2;故错误.
D、是二元一次方程,故正确.
故选:D.
【点睛】
本题考查了二元一次方程的概念,熟练掌握二元一次方程必须符合以下三个条件是解题的关键,(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.
4、B
【分析】
联立,,可得:,,将其代入,得值.
【详解】
,解得,
把代入中得:,
解得:.
故选:B.
【点睛】
本题考查二元一次方程组,掌握公共解是三个方程都满足的解是解题的关键.
5、C
【分析】
根据二元一次方程组的定义,得到关于的二元一次方程组,然后求解即可.
【详解】
解:由题意可得:,即
①+②得:,解得
将代入①得,
故
故选:C
【点睛】
此题考查了二元一次方程组的定义以及加减消元法求解二元一次方程组,解题的关键是理解二元一次方程组的定义以及掌握二元一次方程组的求解方法.
6、D
【分析】
先把方程的②×5得到③,然后用③-①即可得到答案.
【详解】
解:,
把②×5得:③,
用③ -①得:,
故选D.
【点睛】
本题主要考查了二元一次方程组和代数式求值,解题的关键在于能够观察出所求式子与二元一次方程组之间的关系.
7、B
【分析】
根据代入消元法的步骤把②变形代入到①中,然后整理即可得到答案.
【详解】
解:由②得,代入①得,
移项可得,
故选B.
【点睛】
本题考查了代入消元法,熟练掌握代入法是解题的关键.
8、B
【分析】
根据二元一次方程组的定义,即含有两个未知数,并且所含未知数的项的次数都是 1 的方程组在一起叫做二元一次方程组判断即可;
【详解】
解A.中,xy的次数是2,故A不符合题意;
B.是二元一次方程组,故B符合题意;
C.中y在分母上,故C不符合题意;
D.中有3个未知数,故D不符合题意;
故选B.
【点睛】
本题主要考查了二元一次方程组的识别,掌握二元一次方程组的定义,准确分析是解题的关键.
9、A
【分析】
利用代入消元法把①代入②,即可求解.
【详解】
解:,
把①代入②,得:.
故选:A
【点睛】
本题主要考查了解二元一次方程组,解题的关键是熟练掌握二元一次方程组数为解法——代入消元法和加减消元法.
10、A
【分析】
直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别列出方程即可得出答案.
【详解】
解:设马每匹价值x两,牛每头价值y两,根据题意可列方程组为:
.
故选:A.
【点睛】
此题主要考查了二元一次方程组的应用,正确找到等量关系是解题关键.
二、填空题
1、4
【解析】
【分析】
设兑换成面值5元的人民币x张,面值10元的人民币y张,根据兑换成零钱的总价值为50元,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出共有4种兑换方案.
【详解】
设兑换成面值5元的人民币x张,面值10元的人民币y张,
依题意得:5x+10y=50,
∴x=10﹣2y.
又∵x,y均为正整数,
∴或或或,
∴共有4种兑换方案.
故答案为:4.
【点睛】
本题考查了列二元一次方程组,利用二元一次方程组的解进行方案设计的方法,优化方案问题先要列举出所有可能的方案,再按题目要求分别求出每种方案的具体结果.
2、1800
【解析】
【分析】
设需要大货车为x次,需要小货车为y次,根据题意列出方程,求出的范围,分三种情况进行讨论,分别求解每种情况所需运费,即可求解.
【详解】
解:设需要大货车为x次,需要小货车为y次,由题意可得
∵都为非负的整数
∴
当时,,需要小货车运送0次,费用为(元)
当时,,需要小货车运送2次,费用为(元)
当时,,需要小货车运送4次,费用为(元)
当时,,需要小货车运送5次,费用为(元)
∵
∴最低费用为1800元
故答案为:1800
【点睛】
此题考查了方案的选择问题,解题的关键是理解题意,正确求出每种情况下的费用.
3、x2>x3>x1
【解析】
【分析】
先对图表数据进行分析处理得:,再结合数据进行简单的合情推理得:,所以得到x2>x3>x1.
【详解】
解:由图可知:,
即,
所以x2>x3>x1,
故答案为:x2>x3>x1.
【点睛】
本题考查了对图表数据的分析处理能力及进行简单的合情推理,属中档题.
4、29
【解析】
【分析】
可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求矩形另一边AD的长即可,仍可用xy表示出来.
【详解】
解:设最小的正方形的边长为x,第二小的正方形的边长为y,将各个正方形的边长都用x和y表示出来(如图),
根据AB=CD=32cm,可得,
解得:,
矩形的另一边AD=x+2y+y+2y=x+5y=29cm.
故答案为:29.
【点睛】
本题考查了整式乘法运算的应用,二元一次方程组的应用,解题的关键是读懂图意根据矩形的性质列出方程组并求解.
5、
【解析】
【分析】
根据加减消元的方法求解即可.
【详解】
解:用加减法解方程组时,
由①+②,得,
两边同时除以6,得,
由②-①,得,
两边同时除以2,得,
所以原方程组的解为.
故答案是:,,,,.
【点睛】
本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
三、解答题
1、甲种车型需9辆,乙种车型需5辆.
【分析】
设甲种车型需辆,乙种车型需辆,然后根据药材一共有150吨,运费一共9900元,列出方程求解即可.
【详解】
解:设甲种车型需辆,乙种车型需辆,
根据题意得
解得,
∴甲种车型需9辆,乙种车型需5辆
答:甲种车型需9辆,乙种车型需5辆.
【点睛】
本题主要考查了二元一次方程组的应用,解题的关键在于能够准确理解题意,列出方程求解.
2、(1)印制《党旗飘扬》每册30元,《党建知识》每册20元;(2)有四种方案:方案一:印制《党旗飘扬》60册,印制《党建知识》40册,需要付款:2600元;方案二:印制《党旗飘扬》61册,印制《党建知识》39册,需要付款:2610元;方案三:印制《党旗飘扬》62册,印制《党建知识》38册,需要付款:2620元;方案四:印制《党旗飘扬》63册,印制《党建知识》37册,需要付款:2630元;方案一费用最少.
【分析】
(1)根据题意设印制《党旗飘扬》每册x元,《党建知识》每册y元,进而依据等量关系建立二元一次方程组求解;
(2)根据题意设印制《党旗飘扬》a册,则印制《党建知识》(100﹣a)册,可得30a+20(100﹣a)≤2630且a≥60,进而求得a对四种方案进行分析即可.
【详解】
解:(1)设印制《党旗飘扬》每册x元,《党建知识》每册y元,
由题意可得,
解得,
答:印制《党旗飘扬》每册30元,《党建知识》每册20元;
(2)设印制《党旗飘扬》a册,则印制《党建知识》(100﹣a)册,
由题意可得:30a+20(100﹣a)≤2630且a≥60,
解得:60≤a≤63,
∵a为整数,
∴a=60,61,62,63,
∴有四种方案,
方案一:印制《党旗飘扬》60册,印制《党建知识》40册,需要付款:30×60+20×40=2600(元);
方案二:印制《党旗飘扬》61册,印制《党建知识》39册,需要付款:30×61+20×39=2610(元);
方案三:印制《党旗飘扬》62册,印制《党建知识》38册,需要付款:30×62+20×38=2620(元);
方案四:印制《党旗飘扬》63册,印制《党建知识》37册,需要付款:30×63+20×37=2630(元);
由上可得,方案一费用最少.
【点睛】
本题考查二元一次方程的应用以及一元一次不等式的应用,读懂题意并根据题意等量或不等量关系建立方程组和不等式是解题的关键.
3、(1)购买一副跳棋和一副军棋各需要6元、10元;(2)学校最多可以买30副军棋
【分析】
(1)设购买一副跳棋和一副军棋各需要x元、y元,然后根据购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元,列出方程求解即可;
(2)设购买m副军棋,则购买副跳棋,然后根据购买的总费用不能超过600元,列出不等式求解即可.
【详解】
解:(1)设购买一副跳棋和一副军棋各需要x元、y元,
由题意得:,
解得,
∴购买一副跳棋和一副军棋各需要6元、10元,
答:购买一副跳棋和一副军棋各需要6元、10元;
(2)设购买m副军棋,则购买副跳棋,
由题意得:,即,
解得,
∴学校最多可以买30副军棋,
答:学校最多可以买30副军棋.
【点睛】
本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意,列出式子求解.
4、动点M每秒运动5个单位长度,动点N每秒运动2个单位长度
【分析】
设动点M、N运动的速度分别是每秒x、y个单位长度,根据“若点M、N同时出发,则出发后12秒相遇;若点N先出发7秒,则点M出发10秒后与点N相遇.”列出方程组,解出即可.
【详解】
解:设动点M、N运动的速度分别是每秒x、y个单位长度,
∵点A、B表示的数分别是-20、64,
∴线段AB长为,
∴由题意有,
解得
∴动点M每秒运动5个单位长度,动点N每秒运动2个单位长度.
【点睛】
本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.
5、(1)不是方程组的解 ;(2)不是方程组的解
【分析】
根据二元一次方程的解,将二元一次方程的解代入方程计算即可.
【详解】
解:(1)把代入方程①中,左边=2,右边=2,所以是方程①的解.
把x=3,y=-5代入方程②中,左边=,右边=,左边≠右边,所以不是方程②的解.
所以不是方程组的解.
(2)把代入方程①中,左边=-6,右边=2,所以左边≠右边,所以不是方程①的解,
再把代入方程②中,左边=x+y=-1,右边=-1,左边=右边,所以是方程②的解,但由于它不是方程①的解,所以它也不是方程组的解.
【点睛】
本题考查了二元一次方程组的解,检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.
车型
甲
乙
运载量(吨/辆)
10
12
运费(元/辆)
700
720
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试同步练习题,共19页。试卷主要包含了解方程组的最好方法是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试课堂检测,共17页。试卷主要包含了下列方程是二元一次方程的是,已知是二元一次方程,则的值为等内容,欢迎下载使用。
这是一份数学第五章 二元一次方程组综合与测试课堂检测,共25页。试卷主要包含了已知关于x,如果与是同类项,那么的值是等内容,欢迎下载使用。