![京改版七年级数学下册第五章二元一次方程组定向测试练习题(含详解)第1页](http://www.enxinlong.com/img-preview/2/3/12698661/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![京改版七年级数学下册第五章二元一次方程组定向测试练习题(含详解)第2页](http://www.enxinlong.com/img-preview/2/3/12698661/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![京改版七年级数学下册第五章二元一次方程组定向测试练习题(含详解)第3页](http://www.enxinlong.com/img-preview/2/3/12698661/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试随堂练习题
展开这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试随堂练习题,共20页。试卷主要包含了方程x+y=6的正整数解有,已知是二元一次方程,则的值为等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、用加减法将方程组中的未知数x消去后,得到的方程是( ).
A.2y=6 B.8y=16 C.﹣2y=6 D.﹣8y=16
2、某宾馆准备正好用200元购买价格分别为50元和25元的两种换气扇(两种都要买),则可供宾馆选择的方案有( )
A.3种 B.4种 C.5种 D.6种
3、在一个3×3的方格中填写9个数字,使得每行每列每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.如图所示的方格中填写了一些数和字母,为使该方格构成一个三阶幻方,则x+2y的值是( )
﹣3 | y |
|
| 1 |
|
4 |
| x |
A.15 B.17 C.19 D.21
4、如图,用12块形状和大小均相同的小长方形纸片拼成一个宽是60厘米的大长方形,则每个小长方形的周长是( )
A.60厘米 B.80厘米 C.100厘米 D.120厘米
5、已知是二元一次方程的一组解,则m的值是( )
A. B.3 C. D.
6、在沙县国际连锁早餐店里,李大爷买5个馒头、3个包子,老板少拿2元,只要17元;张大妈买11个馒头、5个包子,老板以售价的九折优惠,只要33.3元.若馒头每个元,包子每个元,依题意可列方程组为( )
A. B.
C. D.
7、关于x,y的方程,k比b大1,且当时,,则k,b的值分别是( ).
A., B.2,1 C.-2,1 D.-1,0
8、方程x+y=6的正整数解有( )
A.5个 B.6个 C.7个 D.无数个
9、已知是二元一次方程,则的值为( )
A. B.1 C. D.2
10、已知二元一次方程组则( )
A.6 B.4 C.3 D.2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、有一片牧场,草每天都在匀速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,如果放牧16头牛,则__________天可以吃完牧草.
2、关于x的方程与的解相同,则k的值为____.
3、关于a、b、x、y的多项式2021am+6bn﹣3xmyn+a3mb2n﹣3﹣4xn﹣1y2m﹣4(其中m、n为正整数)中,恰有两项是同类项,则mn=___.
4、《九章算术》记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两,问一牛一羊共直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问一头牛和一只羊共值金多少两?”根据题意可得,一头牛和一只羊共值金 ____两.
5、为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中A,B,C三种粗粮的成本价之和.已知A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%,则甲种粗粮中每袋成本价为 ___元;若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是 ___.
三、解答题(5小题,每小题10分,共计50分)
1、解下列方程组:
(1)
(2)
2、(1)若x+1是多项式x3+ax+1的因式,求a的值并将多项式x3+ax+1分解因式.
(2)若多项式3x4+ax3+bx-34含有因式x+1及x-2,求a+b的值.
3、解方程(组):
(1);
(2).
4、计算下列各题:
(1)
(2)解方程组:.
(3)解不等式组:,并把解集在数轴上表示出来.
5、解下列方程组:
(1)
(2)
---------参考答案-----------
一、单选题
1、D
【分析】
根据二元一次方程组的加减消元法可直接进行求解.
【详解】
解:用加减法将方程组中的未知数x消去,则有①-②得:﹣8y=16;
故选D.
【点睛】
本题主要考查二元一次方程组的求解,熟练掌握二元一次方程组的求解是解题关键.
2、A
【分析】
设购买50元和25元的两种换气扇的数量分别为x,y,然后根据用200元购买价格分别为50元和25元的两种换气扇,列出方程求解即可.
【详解】
解:设购买50元和25元的两种换气扇的数量分别为x,y
由题意得:,即,
∵x、y都是正整数,
∴当x=1时,y=6,
当x=2时,y=4,当x=3时,y=2,
∴一共有3种方案,
故选A.
【点睛】
本题主要考查了二元一次方程的应用,解题的关键在于能够准确理解题意,列出方程求解.
3、D
【分析】
根据题意列出两条等式,求出x,y的值即可.
【详解】
根据题意可得:
,
解得,
x+2y=5+2×8=5+16=21,
故答案为:D.
【点睛】
本题考查了方程组的实际应用,与代数式求值,掌握列方程组的方法是解题的关键.
4、D
【分析】
设小长方形的长为x,小长方形的宽为y,根据题意列出二元一次方程组求解即可;
【详解】
设小长方形的长为x,小长方形的宽为y,
根据题意可得:,
解得:,
∴每个小长方形的周长是;
故选D.
【点睛】
本题主要考查了二元一次方程组的应用,准确计算是解题的关键.
5、A
【分析】
把代入5x+3y=1即可求出m的值.
【详解】
把代入5x+3y=1,得
10+3m=1,
∴m=-3,
故选A.
【点睛】
本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.
6、B
【分析】
设馒头每个元,包子每个元,根据李大爷买5个馒头、3个包子的钱数等于元,张大妈买11个馒头、5个包子的钱数等于元列出二元一次方程组即可
【详解】
解:设馒头每个元,包子每个元,根据题意得
故选B
【点睛】
本题考查了列二元一次方程组,求得张大妈买的包子和馒头没打折时的钱数等于元是解题的关键.
7、A
【分析】
将时,代入,得 ①,再由k比b大1得 ②,将两个方程联立解之即可
【详解】
将时,代入,
得 ①,
再由k比b大1得 ②,
①②联立,解得,.
故选:A.
【点睛】
此题考查解二元一次方程组的实际应用,正确掌握k、b之间的关系列得方程组是解题的关键.
8、A
【分析】
根据题意求二元一次方程的特殊解,根据解为正整数,分别令进而求得对应的值即可
【详解】
解:方程的正整数解有,,,,共5个,
故选:A.
【点睛】
本题考查了求二元一次方程的特殊解,理解解为正整数是解题的关键.
9、C
【分析】
根据二元一次方程的定义,即含有两个未知数,且未知数的次数均为1,即可求解.
【详解】
解:∵是二元一次方程,
∴ ,且 ,
解得: .
故选:C
【点睛】
本题主要考查了二元一次方程的定义,解题的关键是熟练掌握含有两个未知数,且未知数的次数均为1.
10、D
【分析】
先把方程的②×5得到③,然后用③-①即可得到答案.
【详解】
解:,
把②×5得:③,
用③ -①得:,
故选D.
【点睛】
本题主要考查了二元一次方程组和代数式求值,解题的关键在于能够观察出所求式子与二元一次方程组之间的关系.
二、填空题
1、18
【解析】
【分析】
设每头牛每天吃草x千克,牧场的草每天生长y千克,如果放牧16头牛,则m天可以吃完牧草,根据牧草原有牧草数不变,可得出关于x,y,m的方程组,解方程组即可.
【详解】
解:设每头牛每天吃草x千克,牧场的草每天生长y千克,如果放牧16头牛,则m天可以吃完牧草,
依题意,得:,
由①可得出:y=12x③,
将③代入②中,得:16mx﹣12mx=24×6x﹣6×12x,
解得:m=18.
故答案为:18.
【点睛】
本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.
2、2
【解析】
【分析】
由题意根据同解方程解方程的方法联立方程可得,进而即可得出答案.
【详解】
解:因为与的解相同,且,
所以,可得,解得:.
故答案为:2.
【点睛】
本题考查同解方程解方程,解答本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.
3、或##或
【解析】
【分析】
分两种情况讨论:当是同类项时,当是同类项时,再根据同类项的定义列方程组,解方程组可得答案.
【详解】
解:当是同类项时,
可得:
经检验:符合题意;
当是同类项时,
则
解得:
经检验,符合题意;
故答案为:或
【点睛】
本题考查的是同类项的概念,二元一次方程组的解法,掌握“含有相同字母,相同字母的指数也相同的单项式是同类项”是解题的关键.
4、##
【解析】
【分析】
根据“5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到两个等量关系,即可列出方程组.
【详解】
解:设1头牛值金x两,1只羊值金y两,
由题意可得,,
上述两式相加可得,x+y=.
故答案为:.
【点睛】
此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.
5、 45 或8:9##8:9或
【解析】
【分析】
先用求出甲中粗粮的成本价,再求出1千克B粗粮成本价+1千克C粗粮成本价,得出乙种粗粮每袋售价,然后设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,根据甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.这两种袋装粗粮的销售利润率达到24%,列出方程求出比例关系.
【详解】
解:∵甲种粗粮每袋售价为58.5元,利润率为30%,
∴甲种粗粮中每袋成本价为元,
∵甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮,
∴1千克B粗粮成本价+1千克C粗粮成本价=45-6×3=27(元),
∵乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮,
∴乙种粗粮每袋售价为乙种粗粮每袋成本价为6+2×27=60(元),60×(1+20%)=72(元).
设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,
由题意,得45×30%x+60×20%y=24%(45x+60y),
45×0.06x=60×0.04y,即,
故答案为:45,.
【点睛】
本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.
三、解答题
1、(1);(2).
【分析】
(1)方程整理后利用加减消元法求出解即可;
(2)方程利用加减消元法求出解即可.
【详解】
解:(1),
方程组整理得:
①-②×2得:x=-1,
把x=-1代入②得:-1+y=4,
解得:y=5,
则方程组的解为;
(2),
①×2-②得:7y=35,
解得:y=5,
把y=5代入①得:2x+25=25,
解得:x=0,
则方程组的解为.
【点睛】
本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
2、(1)a=0;(x+1)(x2x+1);(2)31;
【分析】
(1)先将x=1代入x3+ax+1=0中,得a=0,令x3+1=(x+1)(x2+bx+c),根据等式两边x同次幂的系数相等确定b、c的值,再因式分解多项式;
(2)设3x4+ax3+bx34=(x+1)(x2)•M,则x=1,x=2是方程3x4+ax3+bx34=0的解,然后解关于a、b的方程组,即可得到答案.
【详解】
解:(1)∵x+1是多项式x3+ax+1的因式,
∴当x=1时,x3+ax+1=0,
∴1a+1=0,
∴a=0,
令x3+1=(x+1)(x2+bx+c),
而(x+1)(x2+bx+c)=x3+(b+1)x2+(c+b)x+c,
∵等式两边x同次幂的系数相等,
即x3+(b+1)x2+(c+b)x+c=x3+1,
∴,
解得:,
∴a的值为0,x3+1=(x+1)(x2x+1);
(2)设3x4+ax3+bx34=(x+1)(x2)•M(其中M为二次整式),
∴x=1,x=2是方程3x4+ax3+bx34=0的解,
∴
∴,
∴a+b=8+(39)=31;
【点睛】
本题考查了分解因式,因式分解的应用,解二元一次方程组,解题的关键是掌握因式分解的方法,从而进行解题.
3、(1)x=;(2)
【分析】
(1)方程去分母,去括号,移项,合并同类项,系数化为1即可;
(2)方程组利用加减消元法求解即可.
【详解】
解:(1),
去分母,得2(2x﹣1)+(x﹣2)=4,
去括号,得4x-2+x﹣2=4,
移项,得4x+x=4+2+2,
合并同类项,得5x=8,
系数化为1,得x=;
(2),
①×2+②,得,
解得x=2,
把x=2代入②,得8﹣2y=10,
解得x=﹣1,
故方程组的解为.
【点睛】
此题主要考查一元一次方程与二元一次方程组的求解,解题的关键是熟知其解法的运用.
4、(1)-4;(2);(3), 把解集在数轴上表示见解析.
【分析】
(1)根据实数的运算法则进行运算,即可得出结论;
(2)原方程组运用加减消元法求解即可得出结论;
(3)分别解不等式①②,取其解集的并集,由此即可得出不等式组的解集,再将其表示在数轴上即可.
【详解】
解:(1)
=
=
=
=-4
(2)解:,
①②,得,
解得:,
把代入①,得,
解得:,
所以方程组的解是
(3)解:,
由①得到,,
解得,,
由②得到,,
解得,,
,
在数轴上表示如下:
.
【点睛】
本题考查了实数的运算、解一元一次不等式组、解二元一次方程组以及在数轴上表示不等式的解集,解题的关键是:(1)根据实数的运算法则进行运算;(2)熟练掌握方程组的解法;(3)熟练掌握不等式组的解法.本题属于基础题,难度不大,解决该题型题目时,熟练掌握不等式(不等式组以及方程组)的解法是关键.
5、(1);(2)
【分析】
(1)用加减消元法解二元一次方程组即可;
(2)先化简方程组,再用加减消元解方程组即可.
【详解】
解:(1),
②-①得:,
解得,
把代入①得:,
解得:,
∴方程组的解为;
(2),
由②可得y=2-x,
把y=2-x代入①,可得x=-1,
把x=-1代入y=2-x,可得y=3,
∴方程组的解为.
【点睛】
本题考查解二元一次方程组,熟练掌握代入法与消元法解方程组,并能准确计算是解题的关键.
相关试卷
这是一份数学七年级下册第五章 二元一次方程组综合与测试随堂练习题,共19页。试卷主要包含了用代入消元法解关于,若是方程组的解,则的值为,若是关于x等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试精练,共19页。试卷主要包含了设m为整数,若方程组的解x,二元一次方程的解可以是,方程组的解是,已知是方程的解,则k的值为等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试同步测试题,共18页。试卷主要包含了如果x,若是方程的解,则等于,如果与是同类项,那么的值是等内容,欢迎下载使用。