初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试当堂达标检测题
展开这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试当堂达标检测题,共19页。试卷主要包含了二元一次方程组的解是,若是方程组的解,则的值为,下列各式中是二元一次方程的是等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如果与是同类项,那么的值是( )
A. B. C. D.
2、已知是方程的解,则k的值为( )
A.﹣2 B.2 C.4 D.﹣4
3、在一次爱心捐助活动中,八年级(1)班40名同学共捐款275元,已知同学们捐款的面额只有5元、10元两种,求捐5元和10元的同学各有多少名?若设捐5元的同学有x名,捐10元的有y名,则可列方程组为( )
A. B.
C. D.
4、有一个两位数和一个一位数,它们的和为39,若将两位数放在一位数的前面,得到的三位数比将一位数放在两位数的前面得到的三位数大27,求这两个数.若设两位数是x,一位数是y,则可列方程组为( )
A. B.
C. D.
5、已知代数式,当时,其值为4;当时,其值为8;当x=2时,其值为25;则当时,其值为( ).
A.4 B.8 C.62 D.52
6、二元一次方程组的解是( )
A. B. C. D.
7、若是方程组的解,则的值为( )
A.16 B.-1 C.-16 D.1
8、下列各式中是二元一次方程的是( )
A. B. C. D.
9、为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知某加密规则为:明文,,,对应密文,,,.例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,解密得到的明文是( )
A.6,4,1,7 B.1,6,4,7 C.4,6,1,7 D.7,6,1,4
10、关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出m,则m的值是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若是方程2x+y=10的解,求6a+3b﹣4的值是 ___.
2、方程的正整数解是________.
3、《孙子算经》是中国古代重要的数学著作,记有许多有趣而又不乏技巧的算术程式.其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八.问甲、乙二人原持钱各几何?”
译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的,那么乙也共有钱48文.问甲,乙二人原来各有多少钱?”
设甲原有x文钱,乙原有y文钱,可列方程组为____________.
4、近日天气晴朗,某集团公司准备组织全体员工外出踏青.决定租用甲、乙、丙三种型号的巴士出行(每辆车座位数不少于20),甲型巴士每辆车的乘载量是乙型巴士的2倍,丙型巴士每辆可乘坐40人.现在旅游公司有甲、乙、丙型巴士若干辆,预计该集团公司安排甲型、丙型巴士共计11辆,其余员工安排乙型巴士,每辆巴士均满载,这样乘坐乙型巴士和丙型巴士的员工共376人.临行前,突然有若干人因特殊原因请假,这样一来刚好可以减少租用一辆乙型巴士,且有辆乙型巴士多出5个空位,这样甲、乙两种型号巴士共计装载259人,则该集团公司共有 ___名员工.
5、若与互为补角,并且的一半比小,则的度数为_________.
三、解答题(5小题,每小题10分,共计50分)
1、某小区为了绿化环境,计划分两次购进A,B两种树苗,第一次购进A种树苗40棵,B种树苗15棵,共花费1750元;第二次购进A种树苗20棵,B种树苗6棵,共花费860元.(两次购进的A,B两种树苗各自的单价均不变)
(1)A,B两种树苗每棵的价格分别是多少元?
(2)因受季节影响,A种树苗价格下降10%,B种树苗价格上升20%,计划购进A种树苗25棵,B种树苗20棵,问总费用是多少元?
2、解下列方程组:
(1);
(2).
3、已知:2x+3y=7,用关于y的代数式表示x,用关于x的代数式表示y.
4、为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民“一户一表”生活用水阶梯式计费价格表的部分信息:
自来水销售价格 | 污水处理价格 | |
每户每月用水量 | 单价:元/吨 | 单价:元/吨
|
17吨及以下 | a | 0.90 |
超过17吨但不超过30吨的部分 | b | 0.90 |
超过30吨的部分 | 6.00 | 0.90 |
(说明:①每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)
已知小王家2018年7月用水16吨,交水费43.2元.8月份用水25吨,交水费75.5元.
(1)求a、b的值;
(2)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水50吨,其中10月份用水超过30吨,一共交水费215.8元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)
5、阅读材料:
在解方程组时,萌萌采用了一种“整体代换”的解法.
解:将方程②变形:,即③
把方程①代入③得,
∴,
把代入①,得,
∴原方程组的解为.
请模仿萌萌的“整体代换”法解方程组
---------参考答案-----------
一、单选题
1、A
【分析】
利用同类项定义列出方程组,求出方程组的解即可得到a与b的值.
【详解】
解:∵xa+2y3与﹣3x3y2b﹣a是同类项,
∴,
解得:
所以.
故选:A.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
2、C
【分析】
把代入是方程kx+2y=﹣2得到关于k的方程求解即可.
【详解】
解:把代入方程得:﹣2k+6=﹣2,
解得:k=4,
故选C.
【点睛】
本题主要考查二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.有解必代是解决此类题目的基本思路.
3、C
【分析】
根据题意,x+y=40,5x+10y=275,判断即可.
【详解】
根据题意,得x+y=40,5x+10y=275,
∴符合题意的方程组为,
故选C.
【点睛】
本题考查了二元一次方程组的应用,准确找到符合题意的等量关系是解题的关键.
4、D
【分析】
若设两位数是x,一位数是y,则两位数放在一位数的前面,得到的三位数为10x+y,将一位数放在两位数的前面得到的三位数为100y+x,再分别根据这两数的和为39和两位数放在一位数的前面得到的三位数比将一位数放在两位数的前面得到的三位数大27,即可得出方程组.
【详解】
解:设两位数是x,一位数是y,则两位数放在一位数的前面,得到的三位数为10x+y,将一位数放在两位数的前面得到的三位数为100y+x,依题意得:
,
故选D.
【点睛】
此题主要考查了二元一次方程组的应用,根据已知正确的表示出两个三位数是解题关键.
5、D
【分析】
将已知的三组和代数式的值代入代数式中,通过联立三元一次方程组 ,求出、、的值,然后将代入代数式即可得出答案.
【详解】
由条件知:,
解得:.
当时,.
故选:D.
【点睛】
本题考查三元一次方程组的解法,解题关键是掌握三元一次方程组的解法.
6、C
【分析】
根据加减消元法,由①+②得出11x=33,求出x,再把x=3代入①求出y即可.
【详解】
解:,
由①+②,得11x=33,
解得:x=3,
把x=3代入①,得9+2y=13,
解得:y=2,
所以方程组的解是,
故选:C.
【点睛】
本题考查了解二元一次方程组,解题的关键是掌握加减消元法解方程组.
7、C
【分析】
把x与y的值代入方程组,求出a+b与a-b的值,代入原式计算即可求出值.
【详解】
解:把代入方程组得,
两式相加得;
两式相差得:,
∴,
故选C.
【点睛】
本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
8、B
【分析】
根据二元一次方程的定义,即含有两个未知数,并且未知数项的次数为1的整式方程是二元一次方程判断即可;
【详解】
中x的次数为2,故A不符合题意;
是二元一次方程,故B符合题意;
中不是整式,故C不符合题意;
中y的次数为2,故D不符合题意;
故选B.
【点睛】
本题主要考查了二元一次方程的定义,准确分析判断是解题的关键.
9、A
【分析】
根据第四个密文列方程4d=28,解一元一次方程求出d,再根据第三个密文,列二元一次方程把d代入,求出第三个明文c,根据第二个密文列二元一次方程,代入第三个明文c,求出第二个明文b,根据第一个密文列二元一次方程,代入第二个明文b,求出第一个明文a得到明文为a,b,c,d即可.
【详解】
解:设明文为a,b,c,d,
∵某加密规则为:明文,,,对应密文,,,.
根据密文14,9,23,28,
4d=28,
解得d=7,
=23,
把d=7代入=23得
解得
=9,
把代入=9得,
解得
a+2b=14,
把代入a+2b=14得a+2×4=14,
解得a=6,
则得到的明文为6,4,1,7.
故选:A.
【点睛】
此题考查了一元一次方程与二元一次方程的应用,弄清题意分步列出方程是解本题的关键.
10、A
【分析】
把x=1代入方程组,求出y,再将y的值代入1+my=0中,得到m的值.
【详解】
解:把x=1代入方程组,可得,解得y=2,
将y=2代入1+my=0中,得m=,
故选:A.
【点睛】
此题考查了利用二元一次方程组的解求方程中的字母值,正确理解方程组的解的定义是解题的关键.
二、填空题
1、26
【解析】
【分析】
先代入求出2a+b=10,再变形,最后代入求出即可.
【详解】
解:∵是方程2x+y=10的解,
∴2a+b=10,
∴6a+3b−4
=3(2a+b)−4
=3×10−4
=26.
故答案为:26.
【点睛】
本题考查了二元一次方程的解和求代数式的值的应用,用了整体代入思想.
2、
【解析】
【分析】
由,可得出,,又由 均为正整数,分析即可得到正确答案.
【详解】
解:∵,
∴
∴
∴,
同理可得:
又∵ 均为正整数
∴满足条件的解有且只有一组,即
故答案为:
【点睛】
本题考查三元一次方程的变式,牢记相关的知识点并能够灵活应用是解题关键.
3、
【解析】
【分析】
设甲原有x文钱,乙原有y文钱,根据题意可得,甲的钱+乙的钱的一半=48文钱,乙的钱+甲所有钱的文钱,据此列方程组可得.
【详解】
解:设甲原有x文钱,乙原有y文钱,
根据题意,得:.
【点睛】
本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.
4、568
【解析】
【分析】
设甲型巴士a辆,乙型巴士b辆,丙型巴士(11−a)辆,乙型巴士乘载量为x人,由题意列出方程,由整数解的思想可求解.
【详解】
解:设甲型巴士a辆,乙型巴士b辆,丙型巴士(11−a)辆,乙型巴士乘载量为x人,
由题意可得:
,
解得:x=,
∵1≤a≤10,且a为整数,
∴,
∴b=4,
∴总人数=4×48+4×24+40×7=568(人),
故答案为:568.
【点睛】
本题考查了三元一次方程组的应用,利用整数解的思想解决问题是本题的关键.
5、
【解析】
【分析】
根据与互为补角,并且的一半比小,然后根据题意列出关于、的二元一次方程组,求解即可.
【详解】
解:根据题意得,
①-②得,,
解得,
把代入①得,,
解得.
∴,
故答案为:100°.
【点睛】
本题考查了二元一次方程组在几何中运用,根据题意列出二元一次方程组是解题的关键.
三、解答题
1、(1)A种树苗每棵的价格40元,B种树苗每棵的价格10元;(2)总费用需1140元.
【分析】
(1)设A、B两种树苗每棵的价格分别是x元、y元,根据题意列二元一次方程组,解方程组求出x、y的值即可得答案;
(2)根据(1)所求得结果进行求解即可.
【详解】
解:(1)设A种树苗每棵的价格x元,B种树苗每棵的价格y元,
根据题意得:,
解得:,
答:A种树苗每棵的价格40元,B种树苗每棵的价格10元;
(2)=1140元。
答:总费用需1140元.
【点睛】
本题考查二元一次方程组的应用,正确理解题意列出方程求解是解题的关键.
2、(1);(2)
【分析】
(1)根据代入消元法计算即可;
(2)根据加减消元法计算即可;
【详解】
解:(1),
把①代入②中,得到,
解得:,
把代入①中,得:,
∴方程组的解集为;
(2),
得:,
解得:,
把代入②中,得:,
∴方程组的解为.
【点睛】
本题主要考查了二元一次方程组的求解,准确计算是解题的关键.
3、,
【分析】
先移项,得到 ,然后等式两边同时除以2,即可求解.
【详解】
解:∵2x+3y=7,
∴ , ,
∴, .
【点睛】
本题主要考查了解二元一次方程,熟练掌握二元一次方程的解法是解题的关键.
4、(1)a=1.8,b=2.8;(2)小王家11月份用水11吨
【分析】
(1)根据7月份和8月份的水费列出方程组,解方程组即可求得a和b;
(2)设小王家11月份用水y吨,由于两个月一共用水50吨,其中10月份用水超过30吨,则分y≤17和17<y<30,分别列方程求解,再结合问题的实际意义可得本题答案.
【详解】
解:(1)由题意得:,
解①,得a=1.8,
将a=1.8代入②,解得b=2.8,
∴a=1.8,b=2.8.
(2)设小王家11月份用水y吨,
当y≤17时,2.7y+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30,
解得y=11,
当17<y<30时,17×2.7+(y﹣17)×3.7+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30,
解得y=9.125(舍去),
∴小王家11月份用水11吨.
【点睛】
本题考查了一元一次方程和二元一次方程组在实际问题中的应用,理清题目中的数量关系,并正确分段是解答本题的关键.
5、.
【分析】
将方程②变形为2(4x-3y)-y=18,再将4x-3y=6整体代入即可求方程组.
【详解】
解:中,
将②变形,得:8x-6y-y=18即2(4x-3y)-y=18③,
将①代入③得,2×6-y=18,
∴y=-6,
将y=-6代入①得,x=-3,
∴方程组的解为.
【点睛】
本题考查了解二元一次方程组,熟练掌握加减消元法和代入消元法解二元一次方程组,体会整体思想解方程组的便捷是解题的关键.
相关试卷
这是一份数学第五章 二元一次方程组综合与测试课堂检测,共25页。试卷主要包含了已知关于x,如果与是同类项,那么的值是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试复习练习题,共20页。试卷主要包含了下列各式中是二元一次方程的是,下列方程中,①x+y=6;②x等内容,欢迎下载使用。
这是一份数学七年级下册第五章 二元一次方程组综合与测试达标测试,共21页。试卷主要包含了已知关于x等内容,欢迎下载使用。